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Abstract

A method is developed for caléulating the dynamic
response of towed-cable systems. This method, which is
designed to provide realistic computational times,
retains important nonlinearities but uses simplified
equations of longitudinal motion.

General equations of motion including terms due
to elasticity, bending and internal damping are derived.
The method ©f characteristics, which is an especially
attractive method for solving these equations, can be
used only if the equations are hyperbolic. It is shown
that the equations are hyperbolic only if elasticity
is included and bending and internal damping are neglected,
and further, that bending and internal damping can be
safely neglected for most cases. The excessive
computational times required by the large longitudinal
characteristic velocity (cable material sonic velocity)
can be avoided if only the transverse equations of motion
are solved by the method of characteristics.

The equations of motion are simplified by a procedure
similar to that used in deriving the boundary layer
equations. When higher order terms are neglected, the
longitudinal equations of motion reduce to linear equations
which are essentially uncoupled from the nonlinear transverse
equations of motions. These linear longitudinal equations
of motion can be solved analytically for suitable linear

boundary conditions. Solutions for two sets of boundary
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conditions are derived. The computational method is
based on these analytical solutions and on solution of
the transverse equations of motion using the method of
characteristics and finite-difference integration.

A number of computed examples are presented. These
serve to demonstrate the accuracy of the computer programs
and to illustrate the effect of various parameters such as
external damping and towing velocity on cable motions and
tensions. The effect of two sensitive parameters, grid
spacing for numerical integration and number of terms used

to represent infinite series, are illustrated.
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INTRODUCTION

The dynamic analysis of cable and cable-towed body
systems is currently receiving considerable attention, due
to the wide range of applications of such sygtems. Important
applications exist in oceanography, geoclogy and underwater
detection. The dynamics of cable systems is also closely
related to dynamics of drill strings and single-leg moorings.

Dynamic motions of cable systems result from
maneuvering or changes in speed of a towing vehicle, or from
the effect of the ocean environment on the cable or towing
vehicle. The analysis of such motions is difficult. The
equations of motion are nonlinear, partial differential
equations. The unrestricted motions of the two ends of the
cable make the problem a two-point boundary-value problem.
Nonlinear, two-point boundary~value problems can rarely be
solved in closed form.

Many methods have been and are being used to predict
the dynamic behavior of cable systems. Casarella and Parsons
(1) and Wang (2) present good summaries of various methods
which have been used. These methods can be divided into
two classes; those in which the cable is treated as a continuum
and those in which the cable is represented by.a series of
discrete,rigid links. Each of these approaches has attractive
features.

The present research is-motivated by a desire to provide
a method which is suitable for the analysis of nonlinear or

large motions and which requires reascnable computational times.



Existing methods can handle highly nonlinear motions, but
required computational times are generally large (see
Reference 2). A second motivation is to develop a method
which can be used to study the possibility of large, “shock-
like" disturbances,which can result with hyperbolic eguations,
The present research is aimed at developing a method which
includes all, or most, of the inherent nonlinearities and
which gives solutions in reasonable computational times.

In order to study nonlinear behavior, it is important
to consider all external and internal forces and moments.
Bending rigidity, rotational acceleration and internal damping,
which are usually neglected must be included in the equations
of motion or shown to be negligible. 1In the present investigation
each of these factors is considered in detail.

For the analysis of highly nonlinear motions, a rigid-
link or finite-element representation of the cable may not be
suitable unless a very lérge number of links are considered,
and the compatibility relations between elements are fairly
sophisticated. As the numbers of elements and their
sophistication increases, the computational advantages of the
finite-element method disappear. The treatment of the cable
as a continuum offers the advantage of greater flexibility and
this representation is used in the present investigation.

In the present investigation only two-dimensional
(planar) cable-body systems are considered. The methods can
be_readily extended to arbitrary, three-dimensional systems,
although computations will be considerably more difficult anad

time consuming.



FORMULATION OF THE EQUATIONS OF MOTION

In this section all forces and moments which can
act on a cable system are discussed and described mathematically.
The complete equations of motion for two-dimensional cable
systems are derived including all of these forces and moments.
Simplified equations of motion in which cable extensibility
and other factors are neglected are also considered. In the

next sections methods for solving these eguations are considered.

Equations of Motion for Two-Dimensional Cable Systems

The motions in two-dimensions of a cable or cable-towed
body are governed by three Newtonian equations of motion.

These equations are, for an element of differential length,

Ag:

. - s F .
m™a; as -3 X, as -ZXM 2s=0 =12 (1)

K$(Jr -"Z:Pqeias - ZE F44335 =0

where m 1is the mass per unit length of cable,
a. is the acceleration in the j'th direction.,
K¢ is the mass moment of inertia per unit length .
a, is the rotational acceleration.

X_ ' and Xi’ are the external and internal forces per
unit length,

M ' and Mi’ are the external and internal moments

per unit length.



As is a differential length of cable,

J=1,2 denotes two orthogonal directions in the

plane of the cable.
The various forces and moments acting on an element of length
are shown in Figure 1.

The problem is most easily formulated for extensible
cables in Lagrangian coordinates. For inextensible cables
the formulations in Lagrangian and Eulerian coordinates are
clearly identical. The equations of motion for inextensible
cables are easily derived from those for extensible cables.
Eguations of motion are first derived in a fixed, orthogonal
(z,y) coordinate system. The equations are then transformed
to the "natural" (m,s) coordinate system having coordinates
which are everywhere normal to and tangent to the cable.

These coordinates are shown in Figures 1 and 2.

Derivation of Equations of Motion with Extensibility

Equations of motion with extensibility have been given
by Craggs (3), Critescu (4) and others. Completely general
equations of motion in the x,y and ¢ or 8,7 and ¢ directions
can be derived from equations (1) with the aid of Figures
1, 2 and 3. The eguationsin the x,y and ¢ directions are
as follows:

x-direction:
n_ 28, AT
Q e*-..ASo "’TCOSCD -{T+ 'g'gobsﬂ\ cos (d+ %—fﬁns.,) -
“"Qend ~(Q+ asysin (§+ ﬁgm\ ~Scos [§+% %t-.o.s.)ns‘,a-

+*N sin i@a--l;_%?-ams,]ﬁso + T—'Jd cos § -(Fjy n-a_;;? As,)cos(cah%?ogsaho



y~direction:

]
mo%f_‘: as, + Tsnd -(T+§§—; as,) s\n (&*%‘%05-] +

+ Qceos § - (Q*%—SQ“,QQO)COS(CQ*-%%ASJ-Sasen

»smn (e J-':.%%, ns,) + N as, cos (Q+ '-‘i%. as.) *
*Figond - (Fiy+ &% as, Yo (&+ 3?.“;'] +

+rW,AS, =0

p—-direction:

fa

Ke %?-“- * Mb"(nb*a;g‘fbgo\“Q 3 +(Q +%%,b‘3.)e%+

X > 2
+ 3 (T+ 30503 25 TR Miy -

- (Msd+};—5—i) as,) = O

Where T is the tension in the cahle,
¢ 1s the shear in the cable,

5 and ¥ are the tangential and normal components

of the external forces,
Fig4 is the internal damping force,

:% and Gy are the initial (Lagrangian) displacements

inthe x and y directions,
m, is the mass per unit length of the cable,

v, is the net weight per unit length, egual to cable

welght less fluid buoyancy per unit length,



¢ is the angle of the cable to the x axis,

M is the bending moment in the cable,

Mid is the internal damping moment,

K¢ is the mass moment of inertia per unit length.

Dividing these equations by Aso, taking the limit

as ﬁso+o, and simplifying:

5 - R (Tewosd) v g (Qand-Seasd- )
" Nsind _%,[F;Jcoscﬁ):O
oy 338

° 3% 59‘3, (TS‘“&) "%,(Q costb)—'SsmCi)+
+ Ncosd "%o“:.id sind) + W, =0

(3)

K, 28 o™ M, . (4)
¢ 3% s=7 - Q - 2 = O

2

The displacements 6x and 63 in equations (1) and (2)
can be eliminated by the method proposed by Craggs (3). The

displacements can be defined, with the aid of Figure 3, as

-a‘;.—;—‘-= T‘coScB-caScDo (5)
'P_ES_B =7 sind - E.m&}o {(6)
Y

o

where ¢0 1s the initial value of the angle ¢, and r is the
ratio of strained to unstrained length, r=e+l=83/aso.
Suitable differentiation of equations (2}, (3), (5), ang

(6} leads to two equations which do not contain



6 and Sy' This method is not suitable if ¥ or S contains
nonlinear terms in 6x and Gy or their time derivatives. As
quadratic, hydrodynamic damping terms are of this type,
this method cannot be used here.

The displacements in equations (2) and (3) can be
replaced by cable velocities u and v, and u and v retained
as primary variables. Eguations (2) and (3) can be resolved

into equations of motion in the »n and s directions:

n-direction: (1) sind -(3)casd B

(7)
rm,(%%ﬁm& +§écos%+ T%g +aa—8 -N - Wmcosd= O

s-direction:

- (8)
rmo%"-:’t_cosﬁ*%}:’smcp)-%ls_ .,ngg -8\:;! -9 rw,sn®=0

where ¥ = ar/ot

The velocities in the normal and tangential direction, ¥ and

vV, as defined in Figure 3 are related to u and v by:

U v 5mc9 -V cos@

\"'-'- v cos& + smcﬂ

(9)

where U and V are the cable velocities in the

normal (n) and tangential (s) directions,



Differentiating these expressions with respect to time

and substituting:

QU v _ b bt
a_tc.o-sc}.*- v smcv.. UE%*’ = é_é\_/_g (10)

=1V
5t sin d -—%—% cos d = - \/%% = AV’“ (11)

Substituting these values into eguations {(6) and (7), we obtain:

QU 29 > 12
A T IETRIAVE SN o - ST SN VRN P S

av d
™, %3 +rm,U-a% —-a—;—i-Q%Qo 3‘:4& S*wsm&) o (13

The necessary compatibility relationships for ¥, ¥V, ¢ and r
can be obtained by differentiating equations (5) and (6)
with respect to time, rectifving to the »n and & directions,
differentiating equations (9) with respect to s, and

eliminating « and v:

d
%yéu +U%£2°_r§_£ =0 (15)

Egquations (3} and (12} through (15), with a suitable constitutive
equation for the cakle material, are the basic equations of
motion for the cable system. The six variables in these

equations are U/, V, 7, §, » and ¢ (the moment ¥, in eguation (4)

b
is a function of ¢). These equations, together with the
equations of motion of the towed body and the specified motions

of the towed point, describe the complete problem.



In order to use these equations it is necessary to
prescribe the external forces § and ¥, the internal damping
and moment M; , and F; , and a constitutive equation for the

cable material.

Definition of Component Forces and Moments

The external forces & and N are composed of external
damping and added mass forces. These forces must be
described in terms of known coefficients and velocities
and accelerations, U, V, 3u/3t and 3v/8t. The appropriate
terms are derived in this section.

The internal damping force and moment must be
described in terms of extension, r, angle, ¢, and their
derivatives. Appropriate terms, based on a Maxwell (strain
rate) model are given in this section.

The relationship between bending moment, My and
angle ¢, based on simple beam bending is given. Finally,
a linear constitutive equations is given.

External Hydrodynamic Forces. An oscillating cable

is subject to external forces due to the added mass and

drag of the cable. These forces are defined to be 180 degrees
out of phase with the acceleration and velocity respectively.
These forces are most easily described by components normal

to and tangent to the cable. The cable is also subject to

a gravitational force due to its weight.
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The external hydrodynamic forces acting normal and
tangent to an element of cable of length Aso can be written

in general form:

u

ZAF) =-m_ 2o o C, 50 =N (16)

n an o+t

Z(F,L =-m_, é,s"\is -CF(WVV =5 (17)

where (Fe/), and (Fe)z are the external forces per
unit length in the normal (n) and tangential (s}

directions,
m, is the added mass per unit length,
Cd is the drag coefficient,

an/at and 8% /3t are the accelerations given by
equations (10) and (11),

¥ is the total normal, external force per unit length,

5 is the total tangential, external force per

unit length.
and the subscripts n and & denote the normal and tangential
directions. The functional representation of the velocity-
dependent terms is discussed below.

An external force is exerted on the cable by the changes
in the values of (Fe), and (Fe)gz along the length of the
cable. It is shown later that such moments are of higher
order and can be neglected.

Many different formulations for the damping coefficients
have been proposed. Casarella and Parsons (1) give a good
summary of these and show comparisons between a number of
formulations and data. Figures 4 and 5 showing normal and

tangential coefficients for cables of circular cross-section
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are taken from Reference {l). The normal force and force

coefficient are given, with very good accuracy, by

Cyn = Cg a9
D =30d. CICIC,, = T4pd, Clciciantd
D, = ¢/ uhul

{18B)

where Cg_ is the coefficient of normal direction

drag for oblique flow,

CR is the drag coefficient for flow normal

to the cable .

¢ is the angle between the cable and the
flow, (Figure 3),

D, is the normal drag force per unit length

cof cable,

p is the f£luid mass density,

C is the steady towing velocity,

dc is the cable diameter,

U is the normal velocity component = ¢ sind,

CR' is the modified drag coefficient = (p/2)d_Cp.

None ¢f the expressions for tangential-~drag coefficient are
in very good agreement with available data, although those
of Whicker (5) and Springston (6) give the best fits to

available data. A simple expression:

C,
D

s

W C cos d (19)
k CeVvicl

s
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where Cds is the coefficient of tangential drag

for oblique flow,

Dy is the tangential drag force per unit

length,
V 1s the tangential velocity component = ¢ cos ¢,

k' is a coefficient between 0.04 and 0,05,

gives a good average fit of the data in Figure 5 and leads

to a purely linear external longitudinal damping. Equation

(17) is therefore used in this investigation, although the

expression of Whicker or Springston could also be used.
Added-mass forces are not considered by-Casarella

and Parsons. Based on added-mass data for simple bodies

such as cylindexs (7), the normal added-mass will be given

by:

where Ma, is the added mass per unit length,
o is the mass density of water,

a, is the cross-sectional area of the cable.

For cables of uniform cross-section, the tangential added-

mass will be zero:

Tﬁas = QO

The effect of extension on cable cross-sectional area will

be minimal and can be neglected, so that the area a, and

diameter dc can be taken as those for the unstrained cable.
All of the coefficients discussed above are based on

tests in steady flow. Tests of oscillating cylinders, such
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as those of Keulegan and Carpenter (8), indicate that force
coefficients can be much larger in unsteady flow. There is
evidence that cable oscillations can cause larger damping
than predicted from steady-flow data (9). In this
investigation, however, steady-flow data are used.

Internal Damping. Internal damping and visco-elastic

effects are not considered in the formulation of most
physical problems. Most investigators of cable systems

have neglected internal damping. Because internal damping
is fundamentally different from external damping, it cannot
be assumed a priori that the effect of internal damping
will be negligible if external damping is included. Even
small amounts of internal damping may be important. 1In this
section suitable terms for modeling internal damping are
considered.

There are many mathematical models for visco=-elastic
behavior (see, for example, Fligge (10)). A simple Maxwell
model (10) seems appropriate for the present investigation.
While the Maxwell model has been questioned since the time
of Love (11), this model has proven adequate in the analysis
of complex structures (see, for example, Penzien and Wilson (12)).
The Maxwell model, which is assumed valid as long as the
deformations of the cable remain elastic, gives a linear
variation of damping force with time rate of strain:

-Fid = k_;%‘%



where fid is the internal damping force per unit area,
ki is an internal damping coefficient,

€ 1is the material strain = {r=-1).

The total internal damping force for a given cable cross-

section is given by

or ’ {(20)
Ficl =-k‘ Q. 2% ="'\'\'." %l_;

A

where a, is the cross-sectional area of the cable,
ki' is the modified damping coefficient = kiac;

r is the longitudinal-extension ratio.

The negative sign denctes that the damping force is 180 degrees
out of phase with the strain rate. An internal damping moment

due to bending strains will also occur. The bending strain is

e, =y(3d) - W)Y

where €, is the bending strain at distance y from

the cable cross—-section neutral axis,
¢ is the local cable inclination,

5 is the Eulerian distance along the cable.
The internal damping moment per unit area is given by

My = - (Kr %:%i:)lﬂ

and the total internal damping moment is given by
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and

] = - ! 31§ (21)
Mia Ke S5, ot

where Mid is the internal damping moment ,
K, is the internal damping coefficient,
KI'is the modified Qamping coefficient = KIIc/r,

IC is the moment of inertial of the cable

cross—-section

r is the longitudinal extension ratio = l+¢.

For realistic strains (e=10"3 for steel) the effect of strain
on the cable cross-section characteristics (ac and'Ic) and

on the internal damping force and moment can be neglected.
The value of r can be assumed equal to one in calculating
cable geometric properties.

Cable Bending and Rotational Motions. ‘Two-dimensional

(planar) cable systems have three degrees of freedom, two
translational and one rotational. These are represented by
the variables U, V and ¢ in equations (3) and (12) through
(15). Previous investigations of cable systems have néglected
the bending mode, although Paidoussis (13) and Pao (14) have
included bending in the formulation of a closely related
problem. While changes in the angle ¢ are considered by all
investigators, the cable is assumed to have no bending
rigidity and shear.

Bending moments must be accompanied by transverse shear
forces, The assumption of finite bending rigidity thus leads

not only to an additional equation for rotational motions



(equation (3)) but also to additional terms due to shear
(BQ/Bso and Q8¢/830) in the equation of transverse and
longitudinal motion. Assuming Navier bending, which is
reasonable for cables which are like wvery slender beams,

the moment is given by

39 _ 39 (22)
M, = EIc_fg - K 3%
where Mb is the moment due to hending rigidity.,

E is the modulus of elasticity of the

cable material,
Ie is the moment of inertia,

K, is the bending moment coefficient = EIc/rz,

It seems reasonable, as in the case of the internal damping,
to neglect the effect of extensibility on bending moment
and to approximate the coefficient KF by
KE = E-Ic.
where Ic is calculated for the unstrained cable cross-section.

Cable Extensibility. FElasticity or extensibility has

been considered in the analysis of strings by Craggs (3} and
Critescu (4) and of cable systems by Schram (15} and Nath (16),
although it has been neglected in most analyses of cable-
towed body systems. While Schram (15) considers extensibility,
his calculations and subsequent calculations reported by
Schram and Reyle (17) neglect extensibility. While physical
extensions (strains) are very small (10_3 or less, typically,
for steel cables), the omission of extensibility has a

fundamental effect on the behavior of the system.
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If extensibility is neglected (r=1), the equations
governing longitudinal motions (equations (13) and (15})
are not hyperbolic and the method of characteristics cannoct
be used to solve these equations (2). Whicker (5), who
was the first to apply the method of characteristics to
cable systems, and many others did not appreciate this fact,
although Whicker found no characteristic values corresponding
to the longitudinal equations. In order to use the method
of characteristics, it is essential to include extensibility
in the formulation of the equations.

For elastic cable materials, a linear compatibility

relationship can be used:

E = lr"'l) = CJ—{:/E =T/CI.C_E

where € is the tensile strain,
r is the extension ratio, r=g+]1,
o, is the tensile (compressive) stress,
a, is the cable cross-secticnal area,

T is the tension (or compression).

For a given material, the tension is a function only of the

strain or extension

T=TW=Ea_(r-n . (23)

Partial derivatives of tension can thus be replaced by

Partial derivatives of »:

o1 _ 3T dT)ar
aso'SFf‘s": =(3-;)£‘ - (24)
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Equations (23) and (24) are both valid forms of the required

material constitutive relationship,

Complete Equations of Motion

The equations of motion are put in usable form by
combining equations (12) and (13) with equations (16) through
(20} and combining equations (3), (21) and (22). The
resulting equations can be reduced to a set of first-order
equations by suitable changes of variable.

Substituting equations (16) and (18) into equation

(12) yields:

mmaa_u’::' Vat— T 35, §-—+C ‘vivl - W, _cosd = O (25)

where m_is the total mass, m =m +m
x n oo Vay

Substituting equations {(17) and (19) into equation (13) yields:

3
os,:*'““ou‘s% ‘as + Q%ﬂ R CIVIU +w,, sind- (26)

—k.l. 6531.- =0

Combining eguations (3), (21) and (22) yields

KQM‘K 39 -3

% e 35, T —\{I So ot =0 (27)

The negative signs for the internal damping in equations (26)
and (27} are required because these terms involve deriv=tives
whose order is greater by one than the order of the derivatives

for the acceleration terms.
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Equations (26) and (27) contain higher-order

derivatives. These equations can be reduced to first~order

equations by the following changes of variable:

= 3

X

o = 3 o
T = 8%

= A _

S‘E‘ngt

Substituting these values only in the higher-order terms

in equations (26) and (27) yvields:

vV P d
mo%_:tfmou-a—?:—g-{+Q%%+HCRV|Cl {29)

+ W, sin ¢ —K_."%—:—. =0

-

b? o ;
Kot -Ke® v Q -, ¥ -0 (30)

The complete formulation of the equations of motion is now

given by equations (14), (15), (24), (25) and (28) to (30):

3V
—§+U§20-§§=0 ()



(=)

5, S,

K %E”KE%%L,,*Q-K;%;:O )
O(—‘%O:O (3)
%%"§%=O G} (31)
Y-%—E:O A
G-Q-c—:-.-o t4)

This is a set of 10 equations in the ten dependent variables
U, V. T, r, @, ¢, a, B, Y and 6, and the two independent
variables ¢t and g, - £ or r can be eliminated by using
equation (23) or equation (3le). Equations (3la) to (314}
are first-order, quasi-linear equations. All of the other
equations are first-order, linear equations.

Equations (31) represent the complete equations of
motion for the most general formulation of the problem. The
equations of motion for a less general formulation can be
obtained by eliminating the appropriate terms and eguations.
If, for example, bending rigidity (and thus shear) and

internal-damping terms are set equal to zero, the equations

reduce to;

nYW\%%ﬁf“W“rﬁJw%f + T %%o*'(:R’LHL“"LHHCQE'Q =0

m 2 + m UR -¢T + kCaVicl+w,smd=0
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If, in addition, the cable material is assumed inelastic
(r21}) the equations reduce, except for the added-mass term,

.y and the details of the damping terms, to exactly the

four equations obtained by Whicker (5).

Methods of Solving the Eguations of Motion

There are at least three methods of solving the equations
of motion of a cable-towed body system when a continuous
representation of the cable is used: direct numerical
integration of the partial differential equations of motion;
linearization of the equations of motion and solution of the
linearized equations; and reduction, by the method of
characteristics, of the equations of motion to ordinary
differential equations which are solved by finite-
difference methods.

Direct numerical integration of the partial differential
equations of motion (equations (31)) is inherently rather slow.
Computational times will be greatly increased by iterative

pProcedures necessary to satisfy the two-point boundary values,
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although these times may be reduced by the use of

variational methods. It seems likely that direct integration
will require the largest computational times of any of the
methods considered. This fact, together with the sensitivity
of such numerical procedures, makes this the least attractive
method.

Linearization of the equations of motion have been
carried out by several investigators. Kerney (18) has
recently presented an analysis based on a small-perturbation
parameter method. He considers equations of motion with
no internal damping and bending rigidity. The method employed
by Kerney can be extended to the complete equations. Kerney
reduces the linearized, partial differential equations of
motion to ordinary differential equations by assuming simple
harmonic motions of fixed frequency. This method can be
extended to complex harmonic motions by linear superposition.
Alternatively the partial differential equations can be
reduced to ordinary differential equations using Laplace
transforms, but the difficulty in finding the inverse transform
is a formidable one. Such a method can lead, potentially, to
solutions in closed form. Computational times required for
numerical solution of the ordinary differential equations
should be moderate. The Primary disadvantage of such methods
is that inherent in linearization.

Solution of the equations of motions using the method
of characteristics is attractive because the two-point
boundary values are automatically satisfied and because no

linearization of the equations is required. Computational
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times are dependent on the characteristic values or

velocities; as characteristic velocity increases, computational
times increase (17). Because of its attractive features,

the method of characteristics has been selected for this
investigation. To treat steel wire rope cables, which are
rather inelastic, other methods may be used for the longitudinal

equations to reduce computational times.



SOLUTION BY THE METHOD OF CHARACTERISTICS

The cable system is governed by gquasi-linear hyper-
bolic partial differential equations. Such equations can
be solved by direct numerical integration or can be solved
numerically after reduction to ordinary differential equations
by the method of characteristics. Whicker (5) apparently
was the first to apply this method to cable problems. This
method is widely used in supersonic aerodynamics. The method
of characteristics is used to decrease the sensitivity, and
hopefully, increase the speed of the numerical integration.

The method of characteristics is applicable only to
quasi-linear hyperbolic equations, but there is no guarantee
that the method can be applied to all such equations. The
method consists of determining characteristic values or
velocities which, when substituted into the partial differential
equations, affect a reduction of those equations to ordinary
differential equations. When no characteristic values exist,
this method cannot be employed.

Courant and Friedrichs (19) present a good introduction
to the method of characteristics. A more complete mathe-
matical treatment is given by Courant and Hilbert (20).

These discussions are primarily concerned with systems of

one {spatial) dimension, but the method can be applied to
systems of more than one spatial dimension. The two-dimensional
cable is a system of one spatial dimension (measured along

the cable). A cable free in all six degrees of freedom leads

to a system of more than one spatial dimension. A brief

introduction to the method of characteristics is given below.
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Consider a system of »n first-order, quasi-linear,
partial differential eguations in »# dependent variables,

Un' and two independent variablest and g:

L’| = Ail)<|t *-;\”fxls A F\nﬂ ><m5 *'E5,=‘()
(32)
Lthnlxna-‘-Aans*-””+A“""‘x“5+Bn=O
or in matrix form
- d d
{‘—} = A s {X] AL X+ {8} = O
where Ll,... L, are quasi-linear, partial differential
operators
All‘ 412"" Anm’ Bn are known functions of
U ., t and ¢
n
m = 2n

and where all functions are continuous and possess as many

continuous derivatives as required. We try to find an operator

L=Z?\L (33)

such that in [, the derivatives of x X

1 X2’ vaey Xy are in the

same direction, the so-called characteristic direction or
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value. The condition for this to be true is:

(?\;A“"""*'—?\nAnlj/(?\|A-.1+ IIII *%nAn1)=
Seeen ® (h.Aﬂm-n"' e %nAntm-»)/(h.Atm*'” *7\“A"“"‘\=
= C

The characteristic value ¢ can be defined in terms of a

parameter 0,

C = 3t /yo
- aso/c)cr

Multiplying equation (33} by dt/dc and ds/do and making use

of equation (34) and the differential relationship

dX _3X ¢ 3X 45 1%

t 4
o - 3x 3ot 38 4o ¢ ><t o T Xe Jor

we obtain:

i

§| Zn 7.\n’m‘w-.(-:.n-n‘-:!‘;?i" -+ zh_ ?\n Bn% %'-":- L

q

Z 2 NPy + Y ALB 4 =45 L

kaj n A=

If at any point (¢,s.) the functions X, satisfy equation (32),

then we obtain a set of n homogeneous, linear equations for

Al,...,)\n:
%-1?\"()0\“'%\2 - sz%) =0

|
O

z: D\K{F\uums%%k" P\wn%ﬁ%\

(36)
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For these equations to be satisfied, the determinant of

the coefficients of the A's must be identically zero.

The solution of the resulting =n'th-order determinant

leads to n solutions or n characteristic values.

of the coefficients of the X's in equations (36)

some, and possibly all, of the solutions will be trivial

If some

are zero,

or equal to zero. If no characteristic values occur, the

method of characteristics cannot be used.

Calculation of Characteristic Values

Characteristic values can be calculated from equations

(31) using the method described in the previous section.

These equations are all in the general, quasi-linear

operator form:

L
L, = AR <8B3 - C ¥

n ) N oAk

*Go5u e W T

T

TR .7,

n

o a? Y
v Nh%‘i + On%osi, * Pr.%%"' Rn%%,, T 5+ Unﬁ,"‘

* CL,%;%.-* E., %£:+‘F

EYc)

35,

3
+K. 35 M

19 BES - 37)
+Vna¥+wnbs°+sﬂ"0 (
where the coefficients An, .oy Sn can be functions of the

dependent and independent variables, but not of their

derivatives., The ten equations are:
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L, = m.3¢ ~m VL +T 3R +32. carulul -
- w, cosd = 0

rmcab\T,t "moU%% '%:s": "'Q%%,*' kcn‘V\Cl +
+mmsmt9 "‘\'(,'.’3—}';‘.'20 (b}

—

2

L,- %-videriteo g
L,- & ~u3d -3r. 91 (31)
Lo -8 (8035 -
Lb =Kq%§-:-\<e%%;‘Q'Ktlg'éa=o i
\_7=o<-%§°=o ta!
L, - % -¥.-0
\_q= Y‘*é\{’o {x}
L. =<S‘"%%=O 4)

&

The characteristic values can now be determined by
setting the determinant of the coefficients of lk in equation
(36) equal to zero. The values of Akgfk,2=l, w..an) in
equation (32) and 4,, B,, etc. in equation (37) are defined

by equation (31}. The characteristic values are thus defined

by:
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© -Bx,. 0 0 ©0 0 0 0 ©
Ctse, 0O -Dx, O ©O o0 O O ©
Esofr. Bshe BTt -Fkc 0 0 -Fe, 0 0 o
"H.tc 0 O -Hx_, 0O O O 0 o
o o0 0 o 0 O 0 o o
O O KNesq M. 0O O O Kes. O =0
O 0O O O -0k, O NgS, O N.s,
0O 0O O O Pes, 0O “Rgt, O O
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This determinant can be

and cofactors and shown to be

be shown that 3030 and tGEO.

exist, a clear consequence of

damping terms.

readily reduced by minors
identically zero, or it can
Thus, no characteristics values

the higher-order internal

The higher-order damping terms in equations

L2 and LG of equation (31) make these equations non-hyperbolic.

If the damping terms in L2 and L6 and equations L

9

and LlD are dropped, a new set of equations for the case of

zero internal damping results.

Setting the determinant of

the coefficients for this prcblem equal to zero, we obtain:



_30.-.-

A|S¢r 0

0 CaSo O -Dq,t,
Es-Fr, Es-Fr, B s-Fix. -Fts
O  -Hx, o O -Hit O

~Tto ®) 0! O o0 O
o O O Kiss M1, O
O O O

o 0 O O

This reduces by minors and co-factors to

(OB RGJ‘:Q‘L “PB N& Sdl ) -Hztcr O

O Pbses O -Rg.td'

C,% Dyt O

-H,t

(=2

O KA- Scr 'Msta'

Setting both the expression in parentheses and the third-

order determinant egqual to zero yields two characteristic

values:

ni

o {52) = (d3) = 2eRe -

K
Ky

(38a)
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Sg t._ ds\* - - D H, M, i 4T
® (E) - (d't) C, K:.H,,- = tm, ar

4s _ +\__
I ey (390
The first characteristic is clearly associated with bending
while the second is clearly associated with longitudinal
motions.

Assuming purely elastic behavior of the cable material

and using equation (23) and (24), we obtain
ds ..+VI daT _+vc1E _;\r—
s - a— - c - - 4
(3t)z ALLF dvr qc- p‘ == E/P = 2 d

where a is the sonic velocity in the cable material. The

value of the bending characteristic is identical:

(C_'-E).I:: qu/KQ =t JEL =T Q

Thus all disturbances are propagated at sonic velocity.
For the case of zero bending rigidity (and shear) and
zero internal damping, the characteristic values, determined

by Critescu (4) and others are:

d —~ \’
(3%}' - t (T;rr : (3%a)

"

(%%) pA EnL;%:E (39b)
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Assuming purely elastic behavior, these become

(%%)‘zi \l::o(r[“—n a = tk.qa

It should be noted that the term kﬁ will usually be much ~
smaller than one, indicating a fundamental difference in

the characteristics obtained with and without bending
rigidity.

The influence of various combinations of elasticity,
bending rigidity, rotational acceleration term and internal
damping on the characteristic values have been examined.

The results are summarized in Table I. The effect of rotational
acceleration (the term K¢BB /9t in equation (3le)) was ¥
considered because this term is often neglected in treatments

of the motions of slender bars, etc. (see, for example

Paidoussis {13)). It can be seen from Table I that the
assumption of finite bending rigidity and negligible bending
acceleration causes the characteristic value due to bending
motions (equation (38a)) to disappear. The only characteristic
value which differs from the values discussed above is the

value /5752;_ which is obtained when elasticity, bending

rigidity and internal damping are neglected.



TERMS INCLUDED IN FORMULATION CHARACTERISTIC VALUES
CASE Elastic~B?nqlng Rotational Internal|lTransverse . .
. Rigid- |Accelera- . : Longitudinal
1ty . : Damping jor Bending
1ty tion
1 X X X X —

2 s T~ T e

6 [ — X % X

7 — X X _— | -
- 1K /X,

8 [ — X —_ — —

9 I —— S —_— — + _
- T/,

Table I - Summary of Calculated Characteristic Values

Table I shows that, even if internal damping is
neglected, three distinct characteristic values corresponding
to the three modes of motion do not occur. If bending is
also neglected, however, two characteristic values corresponding
to the two remaining modes (longitudinal and transverse) occur.
The method of characteristics can thus be applied only if
internal damping and bending are neglected, although it may
be possible to treat these terms approximately. Nath has
considered the internal damping term as a forcing term, but

difficulties in the calculations have occurred (21}, 1In




the next section the case with no internal damping and no

bending rigidity is considered.

Reduction of the Eguations of Motion to Ordinary
Differential Eguations

If internal damping and hbending are neglected, the
equations of motion, equations(31), reduce to four equations
describing the transverse and longitudinal motions. These
partial differential equations can be reduced to ordinary
differential equations by introduction of the appropriate
characteristic values, egquation (39). The resulting ordinary
differential equations can be solved by the method of
characteristics.

Neglecting internal damping and bending, equations (31)

become:

fT“\,n%L,‘(,: "\"mm\/aég +T§§. *‘CR'U\U\ *+wiwsde() o
m Y+, U3 - (435 « kG Vick-wasnd =0

(40)
20 *V%@a 3 -0 ()

6_\_I+Uso_%'{:=o @)



Equations (a2} and (c) describe transverse motions, eguations
(b) and (d) longitudinal motions. The ordinary differential
equation governing longitudinal motions can be obtained by

forming the sum

(40b) = dt
. + (40d)xds, = O

Upon substitution,we cobtain:

(3 dv v as)+ V(32 ¢+ 32 0s) -3E as, -

- (47030 db + BCsVIcler - safaroo 4V

Introducing the characteristic value for longitudinal motions,

ds, VY 4T
g = T | av

and making use of the chain rule of differentiation, equatiocn

(41) becomes after simplification

- K Cp’
AV Udd 3 Vi &1 dr + B V¢ dt -
(42)
- Mo —
Fm'_: Sln&d’t = O
The minus sign in the third term refers to the characteristic
path with positive slope (p characteristic), the negative

sign to the characteristic with negative slope (¢ characteristic).



The ordinary differential equation of transverse

motion is obtained in a similar manner. Forming the sum

(4‘00)" dt

n

* (‘*C)c\‘ dso =0

and substituting as before, one easily obtains the ordinary

differential equations

JU -V rTm]ad & Gitat + 2 cosqar -0 e

The plus and minus signs of the third term apply along the
p and q characteristic paths respectively.
Equations (42) and (43) c¢an be solved in finite-

difference form along the appropriate characteristic lines.

Numerical Solutions of Equations of Motion Along
Characteristic Paths

Equations {42) and (43) can be sclved numerically along
characteristic paths or lines using finite-difference methods.
A good discussion of finite-difference methods suitable for
solving characteristic equations is given by Ames (22).
Several "hybrid" methods which make use of a predetermined
time~space grid are described by Ames. These methods are
attractive because they do not require double interpolation
in both the time and space coordinates. BAmes gives two

methods, one having a first order truncation error, the other



a second order truncation error. The method of Hartree,
which.has the second-order error should be used because of
the improved accuracy.

Figure 6 illustrates the time-space grid used to obtain
values of the independent variables at a new time. The
right (p) and left (q) running characteristics passing through
the point R, where it is desired to obtain values of the
independent variables, are used. Values of the independent
variables at the points P and § are determined by interpolation
of known values at the points 4, B, D, etc. The time increment
At is determined by the spatial increment. Aso and the
characteristic values, f

P
process to be stable, the time increment must be such that

and fq. For the finite-difference

the points P and @ lie in the intervals (4,B) and (A, D)
respectively (22). The time increment must therefore satisfy

At £ as.[if,)

(44)
At 2 AS[]4]

where fp is the characteristic velocity on Ds + T/mnr,
fq is the characteristic velocity on g, - JT/mnr,

T and r are the average values on the paths
P and k{.

I

-

The spatial increment, Aso, will be selected to insure an
adequate description of the cable motions and shape. The
maximum allowable time increment will thus depend almost
entirely on the characteristic velocities.

The motions for non-end points (points in Region I of

Figure 7) are found by simultaneous solution of the equations



along the p and q characteristics intersecting at the point
R. For end points I and U, the motions are found by
simulﬁaneous solution of the equation on the characteristic
lines passing through L and U and the equations describing
the appropriate boundary condition. Numerical methods of

solution are described in later sections.

Limitation on the Use of the Method Characteristics

The only serious limitation of the method of characteristics
is the large computational times required with large
characteristic velocities. This limitation is particularly
acute for relatively inelastic cables, which have very large
longitudinal (sonic) characteristic velocities. For a steel
cable with an average tensile stress of 10,000 psi, the
allowable time increments for a typical spatial increment of
10 feet are approximately 0.03 and 0.0006 second for transverse
and longitudinal waves respectively. All calculations will
be limited by the smaller value (0.0006 seconds). Thus, for
a typical steel wire-rope cable, approximately 10,000 time
increments will be required for six seconds of real time, or
about one period of oscillation. The resulting computaticonal
time will certainly be excessive. The allowable time increment
can be increased only by increasing the spatial increment,
but a relatively small spatial increment is required to insure
good definition of motions and cable shape.

If only the transverse motion are computed by the method

of characteristics, the allowable time increments and resulting
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computational times will be much more realistic. For stecal
cables, computational times may be reduced by a factor of

up to 50, if longitudinal motions can be calculated by a

more efficient method. Because of the great difference, or
disjointness, of the transverse and longitudinal characteristic
velocities, or velocities of propagation of disturbances, it
seems dquite probable that one should be able, with only small
approximation, to decouple one or both sets of equations.

In particular, if the longitudinal equations of motion can

be decoupled from transverse motions, a more efficient

computational method may be found.



SIMPLIFICATION OF THE EQUATIONS OF MOTION

As noted in the last section, the method of
characteristics is not well suited to the computation of
longitudinal motions, particularly for steel cables. An
alternative method is needed for calculating longitudinal
motions at realistic time intervals. If the longitudinal
equations of motion can be linearized, or decoupled from
the transverse equations, they can probably be solved by
more rapid computational methods. 1In order to retain the
ability to study large motions, a careful evaluation of the
magnitude of non-linearities is required. Such an analysis
is discussed in this section.

The equations of motion can be simplified by a method
analogous to that used to derive the boundary-layer equations
in fluid mechanics: The equations are non~dimensionalized
in such a way that each term is the product of non-dimensional,
order-one variables, and one or more small non-dimensional
parameters. These parameters can be evaluated for typical
values of dimensional variables and higher-order terms then

identified and eliminated.

Non-Dimensionalization of the Equations

In order to non-dimensionalize the equations of motion
it is necessary to represent all the independent variables
as sums of steady-state components and components due to

transverse, longitudinal and rotational motions. The variables



in eqguations

UEUo‘tU‘t.-ﬁU-t'

)

VERVARSV

§ = <Do'+ Qt, + 4,

a

o=

T =T,
Q :Qo-'er"!—Qtl |

e+c.

o +T-|:‘ +T*2 * T‘

(31) can be written:

(45)

ro-r(r;:|)+(r;1-n-ru1_\)

where the subscripts denote the following:

¢ 1is the steady-state

t, 1s the value due to

1

t2 is the value due to

2 is the wvalue due to

The component variables can be

of order unity as follows:

1l

(U, /CU,) = U, = o))

(\IO/C V.‘ = vo
(Uh/w6ﬁ3= t; =

o (B}

o )
(U.gt/mén,‘) = U‘\:‘_t o“}
(V;/méﬂ = V). = ol

(‘Bo/QJ = ?éa = oli)

(uniform velocity) value,
transverse motions .
rotational motions,

longitudinal motions.

non-dimensionalized and made
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Q. /(& wNY= B, =o0)
O /(BN = & = ofl)
(ro /€, = % = oll)
(rt,-n/lsﬂwm‘\z ¥, - ol))

e, =0/ (8 W/ =T = o))
(Ta-V/{6wN) = F, = oll)
Q. (EW™ %R/ = Q,

Q AETNfser) = T, = o)

QL /ET™% /352y = Q.. = o))

kS

=0 (\)

T w = —-E ‘O(t\
and the length scales for various components are:

fl

[s./(Ls)] = 3. =ol1)

Lse/(N /)], (5, = o)

[ s./(Va/e)], 430, = o ®
Lo/ (Nt ]y {30, = 00)

where (¢ 1is the steady-state towing velocity,
w 1s the fundamental frequency of excitation,
Stl is the input amplitude of transverse excitation,
6t2 is the input amplitude of rotational excitation,
62 is the input amplitude of longitudinal excitation,
L 1is the cable length,

Vl 1s the transverse characteristic velocity = (T/mnr),

V2 is the longitudinal and rotational characteristic
velocity



I 1is moment of inertia of the cable cross-section,
P, is mass density of the cable material,
¢ 1is the reference, steady-state cable angle,

€ 1s the reference, steady-state strain.

Equations (45) are substituted in equations (31) which are
non-dimensionalized so as to obtain all variables in the
above form. To simplify the non-dimensionalization process,
the variables o, B, 5 and Y are ¢liminated by substituting
equations (31g) to (31j) into equations (3la) to (3Lf).

The buoyancy, external and internal damping terms
require special attention. In order to carry out the non-
dimensionalization, the terms sin ¢ and cos ¢ in the buoyancy

terms must be simplified. We note that in most cases:

L4l 19, + 9. |
d, = o (V)

and thus

1§

sin §= sin ‘bn"(@fﬁ'@h\cos §, =1 +9, +‘$t‘
cos 2 cosd +(d +d)and = | +&, +dy

The transverse, external damping term, which is ncnlinear,

can be written as

CoUlUl = G (Ul v U+ 0 +2U,U, + 20U, +2U, U, ) x

x Sqﬂ (U°+Ut.+Ut \
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The sgn function is not significant in the non-dimensioncl-
ization process and can be neglected. The internal -
damping coefficients, Ki’ and KI' can be expressed as a
percentage, x, of the critical internal damping which is

shown later to be approximately 2V2L. Thus
! ' —
k-i. = ]Lk* c = “2\{1L

i}
K, = WK . = ®2Vv,L
where Y, is the characteristic (sonic) velocity.
Equations (3la) becomes upon substitution of non-
dimensional variables, division by mnmzL, and simplification:

[ &2 aned - L (aVE) 3R g . 32,5) - (2)-

I

* 00, P T (S () BT ]+(5~P-9=.*{6_~J‘5” -
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1(5*) (m\_“_ﬂ[& )ﬁ‘b&_ s (&“ ‘_

&

+(‘%\(é_%: Y& a;a_-m +(“’—L [._:-) ‘F;IBL + J)- V,“& \h U

- el . CIEIRITAR (e n g,

) 50 T
\,‘)(5*\(@‘_)_5 * 20'UnCa. En \(&')(“—JU 0, + (47)

+20'0e Co T (S )& ) (L0, U, + 29°¢,,T = (Su){fu) ()0, Uy +

+ ?'CH.CQ '-'f'_" (-“-r‘)Ut +?Cg.Cal r’jUt o

Where "Pl: P/(?+Pn)
3= a(p.-9)/(0.+),



The terms in square brackets represent the complete steady -
state equation which must be identically zero. Throughout
this section, square brackets will be used to denote the
steady-state equation.

Equation (31c) becomes upon substitution, division

by w and simplification:

e (SO0 Ve (SN 3T ] (),
QR T - NPT AN
Y 28, _fwenErs, g, i y? T

=RV - (BN S - (es)s AR
*(%)(%)%' + (%) ‘5“_)‘%* + €, (2N 4T, "’—f——* N (48)

e R ET (epa RS l“-%,){%)"‘(ét Pl e +

AN RN RUBERTRR

RARNRITE | (s \n"’a’

E33 =0,
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Equation (31lb) becomes, upen substitution, division by

m, w’L and simplification:

€ Vait a%s
[ -% Breg-

P (LT IR g g ().
+kcﬂt(-:_ll\’k TJC:'L\ (‘F-)

b3 i W

Vo 1+ (58 %% + v (S50,

. u,(-amm,% +(‘"‘:)( DRV t"i"ﬂ‘*\ SR A
+ NS00 () ()0, R () ) (sal &

(w__‘:'lg_)(__‘) é;to (5{)% Y kCg,E-q (L.)L“§E lﬁ‘—ﬁ)\l&
RO, + (4 E)(30)3

*E ST SR ke a (e sy 0B
! 3?;1 _—-': Q‘L = O
where I = (I‘/Oc L") o3

Equation (32d) becomes, upon substitution, division by w

and simplification:

°bs’, S UiV, Y (50)
+(‘%“H‘-‘~\ -5‘3.-* B! m.c"i, & (500, 3L .
V). L W Utf‘i; (S (Sy
'“ﬂ B2 - 08 \*—ﬁ
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Equation {(31f} becomes, upon substitution, division

by KE/L2 and simplification:

+l—-) (%) SR+
+ f%}’f%)% - (24 (‘* (R e

[ /sl a::.‘_é - &5y

{(51)

FEAEES M % Qs (2 (a) > Q.. = 0

Order—-of-Magnitude Analysis

To evaluate the coefficients nf each term of equations
(47) to (51) and thus the relative importance of these
terms, a consistent set of values must be assumed for all
dimensional variables. In order to facilitate the analysis,
all dimensional variables will be expressed as powers of a
small variable, E:lO-l. Each coefficient in equations (47)
to (51) will thus become a power of ¢, and it will be easy
to identify and neglect higher-order terms.

As the purpose of this simplification procedure 1is
to find a computational method suitable for relatively
inelastic cables, typical gecometric preoperties for a cable
system with round, non-~faired, steel cable will be assumed.

Typical properties are:
T /L= 107% =
L. /a L = \O°F
Pelp = 10 =€

] A
m M
¥
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The towing velocity and frequency of oscillation

are assumed to be given by:

c/wL =107"

=1 Ez
g /el =107 =¢*

where ¢ 1s assumed to be the fundamental frequency of

excitation or motion.

The cable damping coefficients can be defined by

the typical values

C-q = 1.0 €.°

i
m

k =004
X

= \0~"

]

E2
It should be noted that the value k, which defines the

magnitude of longitudinal damping, lies between ¢ 2

and ¢

The use of the larger value insures that the effect of

longitudinal damping will not be overloocked.

The cable critical angle of free-streaming angle, ¢CH’

can be taken as a typical cable steady-state angle. This

angle is given, for a steel cable, by:

Slnl &r_n TT ?
—_— = < —‘? S—r:ﬁ- - E. <~ :
cos & Ca P C* T Cg ; P? Q?"L (%) [r—f_)




and thus:

¢, = 32°

A typical cable steady-state reference angle can thus be

taken to be:

The corresponding steady-state velocity components are thus

defined to bhe:
U'I' = 5in &t = Eo
V, =cos &, = ¢°

A typical length-scale for the steady-state variables can

be assumed to be:
Ei* = 10 = ¢ -
A typical, steady-state strain can be defined by:

£ = 10 =¢°

Typical amplitudes of transverse and longitudinal

motions are:

(S,g/\_ = E.g
§./L = ¢€°
S/l = &7

The amplitude of the rotational displacement, 6t2 ¢ 1s

assumed one order-of-magnitude smaller than the other

displacements because this is almost certainly a secondary

motion.
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Substituting all of the above values into equation

(47} and expressing all coefficients in powers of e, we

obtain:

[{Foors o }er o352 5%a) )
+{%'"F4%;+_Gt.ﬁ"}ﬁa*{0:+% £+U* U‘}E *
RS T MR VA LR FEE A VRS Ay T
3

-l-{vo%_ﬁ 5‘_-{- 55._‘—.. 35 +'$“:} g-; —

8
3T, | T, 3%, +.—a~§—*8 +  (52)
= 15 &)- bYe) — 1
{7 ST+ R e Y A LY. I
Bi‘pf 3@, . —‘Q; — G, 14
354 3m * Ses } " Yo, € =0

All higher-order terms have been retained for illustrative

purposes. The terms in brackets are the steady-state terms.

It is clear that all shear terms are negligible. The

predominant terms are:

-}

——

ok
Q2

o

C

and

-1
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Although the nonlinear, centrifugal acceleration term

vil
is of higher order and can be neglectad, this equation
cannot be decoupled from the longitudinal motions because
of the term r28¢o /330. The equation cannot be linearized
because of the external-damping terms. Since the equation
cannot be linearized and because the centrifugal aceceleration
term does not increase computational difficulties, this
term will be retained. The shear term, aQo/aso in equation

(3la) can be neglected, however, and
U %g '
“nmé&_\: - ““MV%Q + T 5, +Ca UVl -w,, cosd= O

can be taken as the equation of motion.

Substituting the dimensional values into equation (48),

we obtain:

EERASTUNC R IRE

- -—@_.! WV, G20y 38,7 g5
\J‘l 35’, +{ - 03; ¥ ai}E
B J (53)
3 b -_—
- Vg et - Te%p €1 +0(e™ =0

where the terms in square brackets again represent the steady-~

state scluticon. The nonlinear terms of the form
v
are again of higher order and could be neglected, but are

retained for the reasons noted above. The lowest-order terms
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involve only transverse variables, U and ¢tl, but the

t1
equation cannot be decoupled from longitudinal variables
since equation (3la) cannot be decoupled. Thus, for the
purpose of this investigation equation (31lc) will not be
simplified.

Substituting the dimensional values into equation

(49), we obtain:
L{-S+ater+q e’ +222kq e ]
%\%‘“é—;’%}ss—{%-m}s*

+{5t‘+'003—§%'}i€5+ ol€*) =0

(54)

The internal damping and shear terms are clearly of higher-
order and can be neglected. The only nonlinear term, the

centrifugal acceleration terms of the form

o

U

are of higher-order and can be neglected. The external
damping term represented by ﬁﬂ' is one order higher than
the lowest-order term and can probably be neglected. The
lowest-oxrder term involving non-longitudinal variables,
is the term

SF,
2%
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which is also of one order higher than the lowest-order
term. Reference to equation (49) shows that the power of
¢ of this term is proportional to the amplitude, th,

squared, while the power of € of the lowest-order terms

OV aF
oM o 2Ts
3% 5%,
are propertional to the first power of amplitude, 6£. Thus,
if amplitude ratios 6t /L and SE/L, of 10-2, rather than
1
10—3, are assumed, the leading terms of equation {54)
become:
éwl é éT'*} '-_ 3
— - e 54
{ 3T + E + 1 + ( )

In this case the term a?tl/B§; is not of higher order and

cannot be neglected. For most cases, where the amplitude

ratios should be expected to be 1073 or less, this term

can almost certainly be neglected. Equation (31lb} can then

be satisfactorily approximated, after equating steady-state

terms to zero, by:
-V, %2_

<

N, >
2t

which is shown later to be the wave eguation.
Substituting the dimensiocnal values into equation (50),

we obtain:

[{asn _-*'aso-}E] 63’« — "U*%‘%I’E +

{U" A' + U, 5% aaf». E +{Ua. 3%, ér‘}E +ol(€7=0

(55)
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The nonlinear terms of the form
v 59
3%,
are higher order and can be neglected. The only term

containing a transverse variable which is of lowest-order

is the linear term

U, %
t, 05,
Reference to equation (50) shows that the exponents of ¢
for all three lowest-order terms are proportional to amplitude,
so that the relative importance of these terms is independent
of assumed amplitudes. Equation (31d@) can thus be approximated
by:
6\¢n ér3

Ss. 3t t Lh-%é? = O

@ ' n

The value of the transverse-velocity component can probably
be approximated to facilitate solution of the longitudinal
equations of motion.

Substituting the dimensional values into equation (51},

we obtain:

{&a “%:f}ﬁ] P {To ) e

b‘la}, £ +{‘ 3-\5* } Eb‘*o(ﬁ’) -0

(56)



All dynamic, or time dependent terms are clearly of higher
order and can be neglected. The resulting equation becomes

Q = K, 29

-4 ac_,o'z.

the well known bheam equation. It is clear that bending
dynamics are not important and can bhe neglected. The
consequence of this conclusion is that equations (31f) to
(31h} and (31j} can be dropped. Since the internal damping
has been eliminated from all equations, equation (31i) can
also be dropped.

For a highly elastic material, such as polypropylene,
the relative importance of some o¢f the terms in equations
(52) to (56) will change. Differences will arise from the
lower characteristic velocity for such materials. The primary_
effect of this lower characteristic velocity will be to
increase the relative importance of terms involving longitudinal
variables, and particularly spatial derivatives of longitudinal

variables.

Summary of Simplified Equations of Motion

Based on the preceding analysis, bending and internal
damping terms can be neglected in all equations, and the
original set of equations, equations (31}, reduces to four
equations, two governing transverse and two longitudinal
motions. The analysis indicates that the nonlinear terms

Vag¢/ot, Ud ¢ /3t and Va{b/aso in equations {(31la}, {(31b) and



{(31c) can be neglected, and the term U3<p/aso in equation

(31b) replaced by the linear term:

Uu%%: = (U-u,)3%

The external-damping term in equation (3lc) may be neglected,
but the nonlinear, external-damping term in equation (31a)
cannot be neglected. Eguation (3la) is thus inherently non-
linear and cannot be solved analytically. Eguations (31h)
and (314) are essentially linear, however, and can be solved
analytically if the term Utao,/aso is treated approximately.
These equations can thus be solved analytically. Since
equation (3la) is nonlinear, the terms Vag /3t and Vi /Bso
can be retained with little increases in computation difficulty,
and this will be done.

The simplified equations of motion which will be used

to compute cable system dynamics are:

My ?-,3_ -mm\/%% +Ea_(r -I)%%_*vCR'UlUl

~-W,c05d =0 (@)

2 Vi et o :
Vi _ar _ 0383
EERE R NG _4_-?5, =0 @

where ¢ 1is the total transverse velocity

¢ is the cable angle of inclination



2 is the unsteady longitudinal velecity,
V£=V—V ’
o

r, is the unsteady strain due to longitudinal

motions, ro=r-r ,
U, is the unsteady transverse velocity,

U‘L':U-UO v

is the steady-state angle of inclination.

Equations (57a) and {(57b) reduce by the method of characteristics
to two ordinary differential eguations, equations (43). These
equations can be solved for Y and ¢. Eguations (57¢} and

{57d) can be solved analytically for v, and ros and thus for

¥V and r, using Laplace transform methods. The calculated

values of ¥V and r are then used in the solution of equations
(43). in the next section suitable boundary conditions are
discussed. In the following sections, solutions of equations

{57) are discussed.
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BOUNDARY CONDITIONS

Suitable boundary conditions at the two ends of the
cable are required to calculate cable-system motions. Because
the primary purpose of this investigation is to study methods
of solution rather than to study cable and body hydrodynamics,
only simplified boundary conditions will be considered for
the towed body. In general most hody end boundary conditions
which can be linearized can be used in the computational

methods considered here.

For any towed-cable system, the boundary conditions
at the upper (towing) end will usually be specified, time-
dependent displacements or velocities of the towing point.
Since it is reasonable to assume that the cable will be
unrestricted in bending at the towing point, it is necessary
to specify only two translational components of displacement
in the x and y (horizontal and vertical) directions. Required
displacements or velocities in cable ccordinate directions
(n and s8) can be determined from specified values in the =z
and y directions:

8, (L) =6t =56, sin QU)- 8§, cos PlL)

{58)
o UL,y =U ) = upsinQiL) - v cos (1)

and
§, (Lx) =8 (k) = 5, cos §lL)+ &, sin 4 (L)
(59}
V(L,t) = Vth\ = U, ¢os @(L\*'vt_sm@l\_)



where
§_ and 68 are towing-point displacements in the
cable (n,s) coordinate system.,

U, and V, are towing-point velocities in the cable

coordinate system,

8§ and Gy are displacements in the (x,y) coordinate

x
system
ur and v, are velocities in the {(x,y) coordinate
system.
d(L) is the cabkle inclination at the towing
point -

Similar relations can be derived for towing-point motions
specified in cther coordinats systems,

Boundary conditions corresponding to a towed bhody are
typically very complicated. For all but the simplest body
geometries, these boundary conditions are highly nonlinear,
While such boundary conditions can bhe approximated by finite~
difference equations, iterative solutions will usually be
required. Even the simple houndary conditions proposed by
Whicker (5) require approximate finite-difference equations.

Simple body boundary conditions can be derived by
considering limiting cases of the boundary condition propose

by Whicker (5):

_ - dL
Tb cos §(cy - D, = A J e (60)
= M ?_‘I-l-.b

Tb swn @ o) ~ L, y

o/
ot
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where Tb is the cable tension at the boedy,

D, is the body drag.

b

Lb is the net body lift (dynamic 1lift plus
buoyancy less weight) .

" and my are the body masses (including added

mass) in the x and y directions;.

Uy and v, are the body velocities in the x

and ¥ directions,

6fo) is the cable inclination at the body .

Equations (60} are nonlinear, even if the body lift and drag
are assumed constant. If the body mass and forces are
considered very large compared with cable mass and forces,
the body accelerations can be neglected and the boundary

conditions become:

U, () = -C swd (o)
V, 8 = C cos & (0

Neglecting the acceleration terms in equations {61) leads

(61)

to the conditions:

_rb = D, cos Q (o) + L‘D sin ®10)
@0y = tan” (L,./D,)

Since the body is assumed to have zero acceleration, the lift
and drag must remain constant and egual to their steady-state

values so that
@ 10) = tan ' (L./D,) & tan™(L, /D, ) =4, (0}

where the subscripts o denote the steady-state values



Eguations (61) therefore become:

U, (t) = -C sin 8, (0)

(62)

V, 0 2 C cos 4, (0)

where ¢O(0) is the steady-state angle at SO:O'
Equations (62) are linear boundary conditions.

If the body mass and forces are assumed negligible,
the cable acts like a free-ended cahle and the boundary
conditions become:

T, = 0O

¢ (63)

o9, =0
The latter condition guarantees that there is no moment at
the end of the cable. These boundary conditions are linear.

In order to solve analytically, the simplified, linear
equations of longitudinal motion, eguations (57), linear
boundary conditions in the longitudinal direction are regquired.
The longitudinal boundary condition discussed in this section
can, for most cable systems, be linearized with only minor
approximations. The boundary conditions for transverse motions
can also be linearized, although this is not essential.
Linearizing these boundary conditions will usually lead to
reduced computational times.

For most towed-cable systems, and particularly those

with steel wire rope cables, which have a large critical angle:

(L) = 0(1) and P'LY<<)



and hence

§, (L) > &'(L\

where ¢O(L) is the steady-state component of ¢ (L)}

$'(L) is the unsteady component of ¢ (L),
¢(L)= o (L}+ ¢ '(L)

Making use of this approximation, the houndary condition in
the longitudinal direction at the cable upper end can be

approximated:

E§ (k) = &, cos L)+ & sn Q)

= §, [ cos &,(Vcos @' (L) -sind (1) swn &' (v}
+ 5-, Loind, (W cos §'(LY v cos cﬂ.lL\ sind! (]

E,1) T &x cos 4,00 + 8, e d, (1)

Equation (64) should be sufficiently accurate, even for

buoyant cables where

¢ (- O

for in this case the displacement 6I makes the only important

contribution.
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SOLUTION OF LONGITUDINAL EQUATIONS OF MOTIONS

The simplified equations of longitudinal motion derived
earlier can be solved analytically using Laplace transform
methods, if boundary conditions are linear and of suitable
form. The resulting solutions, which are essentially
independent of the transverse solution, give the longitudinal
velocity and strain at any time and position. 1In this
section analytical solutions are derived for the linear
boundary conditions considered in the previous section.

The simplified equations of longitudinal motion are:

{JTY:' -v,® Q-E = 0 (57¢)

V' _ ar!

>
S *Uta%i 0 (57d)

where V' is the unsteady component of longitudinal
velocity

r' is the unsteady component of longitudinal

strain

V2 is the longitudinal velocity of propagation

= /E/pc

Ut is the transverse velocity of the cable

¢o is the static cable angle

These equations are satisfied by the following changes in

variable :
.Y
V' =5
R AR XY (65)

where Y is the longitudinal displacement.
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Taking derivatives and substituting in equations (57c)} and

(574) , we obtain:

oY 2 Y

3¢ M o552 =0 (66)
- o (%)
£(3,¢) = 9—4;);‘;‘— StU(“é,t\cH: | (67

Equation (66) is the well known wave equation , which can be
sclved for the displacement Y. The longitudinal velocity

and strain can be determined from Y using equations (65) and
(67). The term f(s,t) represents the contribution of transverse
motions to the strain. It has bheen shown that this contri-
buticn of transverse motions to the strain. It has been shown

that this contribution can bhe significant.

Cables with Free Lower-End

For a cable with a free lower-end, oscillated at the
towing point by a harmonic longitudinal velocity, the boundary

and initial conditicns are

N
YiL,t) =Za,,, sin mwt | é—t—:::‘tu O

w1l

(68)

Y (s,,t) + Y (s,,0)

Yis,0)= =577 =0ats,, T3x =0,0% <L

Taking the Laplace transform with respect to time of equation

(66) , and making use of the initial conditions, we cbtain:

cl"q (6., o) - o *
- dsg* Vv,

Yyls,,«y = O



where o is the transformed variable

y(ao,a) is the transform of Y(so,t).

The solution of this equation is

yis,,o) = A smh(u\z“) + B cos\\(i\z-?)

Taking the Laplace transform of the boﬁndary conditions and

solving for 4 and B, the transformed equation becomes

cosh (%) - may
Yls, &) = NEDE ™ (mw)? vax* (69)
cos 2} me

The inverse transtorm of this equation can be found using
residues, as outlined in Chapter 6 of Churchill (23).
The inverse Laplace transform of any function f(la)

is given by the inversion integral:

T )$ o
[ e fle dex

Fe) = 37 @] = 0 {;—Taﬂ ¥-29

where o is now considered to be a complex variable =

o +70,
r z

and where the function f(a/) is analvtic everywhere in the
half plane o, 2 § . For functions which cannot be inverted
using tabulated inverse transforms, it is often possible to
evaluate this inversion integral using the theory of residues.

By the residue theorem the integral of eatffu) around
the closed path CI+Co in Figure 8, enclosing N poles, Sq

52,..,SN, is given by:



N
. €™ ft do +Sce""4:(oddu =27i ) P. ()
b 1 o

m=3
where P, is the residue of the pole at Sn

As Bn * ® and hence K, = ® , the integral ¢, tends to the in-

version integral. Assuming that BN *+ © as N » «», then:

Liomn —J—.[Cte“ﬂalda — 17 [f]

Necd 3T A
d)reo

and
37 Leeo) = 2 Pt - Y, gc,e““"‘”‘"

For suitable functions y(So,q), the integral over CO+ 0 as

RO + ® and hence:
37 L] = Zsl?...(t\ o (70)

The exact condition for the validity of equation (70) is given
by Theorem 10, Section 67 of Churchill (23). This representation
is valid for all times ¢>0 if, on suitable (circular arc or

parabolic) paths Co’

™M
| $a) < T (71)

where %k is positive and ¥ and k are constants independent of
¥. If, in addition, k>1, eguation (70) is valid for all t>0.
The essential uniqueness of the inverse transform and of equation

(70} 1is demonstrated by a theorem of Lerch (23).
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t

The function y(so,u)ea has simple poles at the

values of a:

oc = Timw ,m=1,---- N

X = Trl:,l {om +4) 1 ,m=0,t),%2, .-

The residues of these poles are most easily evaluated using
formula (8), Section 66, of Churchill {23). The residues of

the poles at +inw and -inw are:

cos (mws, /V,) @ ™t
= Q. coslma U /V, ) 2

P- 2 rimie

cos lmws, /V,) e'—“““‘
Puzcimw = G cos (mw L/ V,) i

Adding these values, combining the exponentials to form a

sine, and summing over all values of », we obtain

N N cos{mws, /V,)
- 2 s\nmwt
Z‘R““+P-'i'““ - ;qm cos (mwi/V,) ‘ (72)

™Mz

The residues of the infinity of poles corresponding to zero
of cosh (aL/Vz) are obtained in the same way. The residues

for the poles corresponding to m=0 and m=-1 are:

anv,t/L W
P = YJ"- cos {2ws /L) a oW a
me0 L r7 e LY s ™ (mw)* (6T V¥, /1)
"“l:l“v;ul. N My
P ="\-£ cos (fmws, /L) i Zam(mwp_(l,ﬂ;“_/u'-
mx |

L T ] |
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Adding and simplifying, we obtain:

Z?«ncn ,....,3 2\-’&' cos (L ws, /L) '::n'iﬂ'v‘_t/\.\ *

o
L Tm (mwy - Wy, )
Forming the same sum for other sets of values of m{l,=-2;3,-3;

the general sum is obtained:

28+, (Y,-_‘-)[-\)::s[(mm s.I\] sm[(mﬂmr\l,th_']:

Z Q. (mw)® -(Vﬂtv ny'
Summing for all values of m yields

Z ? 2 Z(Y-) Z (- I) cos [(m;-!,,hr s,l\_] sin [_(nm-r -Htrv,_t/\_] x

Mo

M

z Q. (mw)* - Qms )V, A

The longitudinal displacement is now given by the sum of

(73)

equation (72) and (73) if the integral over the path C, is
zerc. It can be shown that the function y(so,a) satisfies

the condition of equation {(71). First it can be noted that:

l cosh(%) l"l = cosh {rLcos 8N Y+ cos™(rL sinO/N,)

where o =re?f

Now if the argument of the cosine is taken to be

l’"%’; sn@ = r«-‘-/V-; = a1 where ms\, 2, .-

then:

\ Cosh(e%—;)\‘ 2 cosh (rL cos & /V.) + )



We now assume that CO is a circular arc of radius r with
center at the origin (o=0). This circular arc cuts the

imaginary axis at the points

These points lie midway between the m poles, a=¢£(m+%)ﬁV2/2,

and do not correspond to the ¥ poles at a=#27inw unless

mw =TT {rmei)V, /L

for any value of n and m. This condition corresponds to
resonance, and must he excluded for any hounded solution to

exist. Now for o on CO:

\ (s, «) (w4 ot® ‘= cosn (rs.cas 8 /) + cos® (rs, sind/\) )
M & Qmmw cosh (ricos® /Ny ) + )

The limit exists because OgSO/Lil and because cosh?y increases
when |y] increases. As |al+= , the term (nw)? in the numerator

can be neglected and

< |

‘\gls.,d\o(‘
1§:a“nmu

Thus |y(so,a)| is of order
| uits,, x| = O(e™)

and the condition of equaticn (71) is satisfied and the integral
over the circular arc CO is zero.

The longitudinal displacement 1s thus given by:
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N o
Yis,, ¢) = ;,?mw"?-x.m + Z;o P
~
cos (mws, /N, )
Y‘5o.“=) = ZQ"' cos (mw L/ V, )} sin mwt (74)

+2[% ]Z (1) cos [ fmed ) s, Al sinffometiwv,en] ZQm i TR

"m0
The summation over m must be taken for a sufficient number
of terms to insure suitable accuracy. The validity and
unigueness of this solution is insured by the theory of
Laplace transforms, as noted earlier. It can bhe easily
shown that equation {74) satisfies all boundary and initial
conditions. It can be shown by direct substitution that
equation (74) satisfies equation (57¢) and is thus the
required solution.

The longitudinal velocity and the longitudinal component

of strain can be obtained by differentiating equation (74)

with respect to t¢:

cos{mws, /Va)

~
= cos mwk +
V“-.ﬂ w;.amm cos (mw LIN, )

+210 (!" 12 (-“m(m*‘-a\ cos {lm+ 4\ ‘S,IL] !

o . {75)
W

x cost(mo{\ﬂ\ltll.] ZQ (rtot™ - D“,.i)“-\]‘h.]‘

ris.)= %Q.;: {\Ulsoax - (9) ZQ,,‘ Unim@sa M) o i -

oy cos (mmw\./ Na)

~2 (B) 2 () (w4} sin [(emv iYW Sa/L] 5
™0 N {76)

mu
v cos[fmeddw e/l ) O e ey T

mEy




The longitudinal velocity, V, can be calculated at any time
and position using equation (75). The strain can be calculated
at any time and position only if the transverse velocity is

known. As noted earlier, the motions become unbounded if:

mo =T {meiiwV, /L

for any values of n and m. This condition corresponds to
undamped resonance. It is assumed that this condition does

not exist.

Cables with Free Lower-End and External Damping

As noted earlier, external damping can have a significant
influence on the longitudinal motions of some cable systems.
It is useful to consider the effect of such damping on
calculated longitudinal motions. It is necessary to make some
approximations in order to obtain a solution using Laplace
transforms, but the results clearly indicate the magnitude of
the effect of external damping.

The longitudinal eguation of motion, including external,

hydrodynamic damping is:

‘Y ’-é‘Y -
ésrt "V, 352 *Cy' 3% =0

(77)
where

!
Ca' = kCulcl/m,
Taking the Laplace transform of this equation, introducing

the initial conditions, and solving the resulting ordinary
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differential equation for the transformed variable, y:

Y 2 ' i}
b +C.|ot) s‘-b-Bcos\n(f.‘__t.g_g ‘S

Y(s.,0t) = A sinh A °

Introducing the boundary conditicns for a cable with free

lower end, equation (68}, we obtain

cosh (o®+ 'V (S, /N,) & a, mw
cosh (o2 +C o) (L)) & imuw)® »

“(S.J“ =

The inverse transform is found by evaluating the residues
of the poles of the function y(%9,a)eut, as outlined earlier,.

The poles of this function are:
o =Timw m=y,2, - N (78a)

(LAY .
[u“-o- C4'xX) [\..l\l,) ={m+4lWi mro ¥, ... (78b)
The position of the latter poles is given by
Q(‘-t-cd'o( »> [(ma-{hﬂ./\l,,,]‘ = O

and
Via

a
c L c ! . T
o = 4 ‘.':{(__:_) +[{....~g\m\./vj }
It can be shown that all of these are simple poles.

The residues of the poles given by (78a) are given

by:
.,N cosh[mw) —Aqu] (S./N) 4 etunwt
Prim = Z nCOSh L (mayadmwCy 1™ (LIVY: 2
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which reduces by the procedures outlined earlier to

N . ‘
z Cos [(-nb\ ~amwCy ] * (8a/N,)
) P+ " lqm cos Umll\'-l\nmcilj'}; (LN s\n mwt
=i - .

The complex argument of the cosines can be simplified by

rewriting these in exponential form:

[(mu\"-'amwc"'lu‘ (s, ) = (F e B\ (se /N,)

A W AL

where

v

+ [(mw\‘blmw ' \‘]u‘z Imw\‘ [| + %l‘] e

~tan -t (Ca'/mw)

[

The argument is thus given by

i tan” (€' Imw)
[l -imercy] (5N = 222 {4 e it cdine

For typical steel cahle systems:

w = of\)

Cy' =010} - o(10"")

So/Na & of\)

/Ny £ sV}
so that, for all values of n,
Ca'/mw €<\
Callmay” <<

and, to a very good approximation

[fmat* im0 €2 1 1501V,) T muw s, /N,

Llme*-imw €' 1™ (LAL) B meL IV,
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The values of the residues, egquation (79)

are then given
N
-
ZP!imm -—ZG
mal

ma|

Cos (mws, /V,)

™ Cos(mw L 7V,) SN MWk

which is the same as the value obtained with no damping
given bhy:

Pust

(80)
The residues of the poles corresponding to (78b) are

(otd+ €' )™ cosh (ol ¥+ e ‘“JVJ “t < _a,mw
(200 + ;') sinh (d‘+c,'¢)"‘(\.lv,\ (mun‘-l-ct"
where
(x™+ Ca'et) " = (eme )TV, A /L
2“ + Cd =
and
of =

~Ca' o
"i'-

i - Uemetymv, A7)

C,'

{&2Y - metyrvn 1}

>
Now, for the typical values noted ahove

<<

2K ¥ Cy
and

for all values of m, and to a very good approximation
[

o

-

i [(2m+ 1)V, /L]
c' .
=T

1\13

cos [lm+4)wws /L] @™ iimatin
{-1 ™
2

U""‘ LMV, / \-.l
Substituting these values into equation {8l) , we get
Som 2

QA, M)

ms

-Ci'k
. e
2i

x

(mw)? -T(m+yuv, 71 )
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Combining the values for m=-1, and 0, etc. this reduces to

s

zt\é)e-c"t Z(“\)“cos [(nm +ns, L] =

% -

ap gt

N
x sin [fome 43TV, & /L] » 2:2«- mw) = Tme TV, A1 (52

Except for the term e"cdrt, this result is identical with

the result for zero damping, eguation (72). It is interesting
to note that the damping decay term, e'cd,t, is independent

of the input mode, n. The magnitude of the damping term can
be calculated for the typical properties of a steel-cable
system chosen earlier. Assuming a time corresponding to the

time for a given disturbance to reach the lower end of the

cable, L/Vz:

C,'t =(<’4)(&](#¢;\ = 0725

and ‘
e “* 078

which represents an amplitude reduction of 22 percent. This
result confirms the conclusion of the earlier analysis that
external damping can have a significant effect on longitudinal
motions.

The solution for Y(%j,t) is given by the sum of equations
(79) and (82). It can be shown, by the same process used for
the equation without damping, that the condition of equation

(71) is satisfied because

yls,, &) = Ofex™)
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This solution cannot be verified exactly by substitution

into eguation (70) because of the approximations made.

Cables with Fixed Lower-End

For the case where the towed body has a finite drag
but such a large mass that its accelerations are negligikle,

the boundary condition at the cable lower-end is

Yi(o,¢) = O
The other boundary and initial conditions are assumed the
same as those of equation (68). Neglecting damping, the
differential equation of motion and its Laplace transform
are the same as those for the free-end case. Taking the
Laplace transform of the boundary conditions and intreducing
these in the transformed equation, we obtain

xS o

sinh (u s,) Z " mod?t ot

yls, ) =

9

The procedure for finding the inverse transform is very
similar to that used for the free-end case, equation (69).

The poles of y(so,u) are
u::‘.’;mw ' m=]J'1‘...N
X = *“Vaﬂ‘“/\_ . ﬂﬂ=0,'-"-\‘:7.) .....

The first set of poles yieldsthe contribution to the inverse

transform
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N N
Sin {ma ‘5./\[1.)
ZP‘-M‘ P = mzﬂa“' sin (mew ./ V)

S\n mwt (83)

The second set of peoles yields the contribution:

a, muw

- ~N
V,
S P =2 ¢ Zsm fomrrs, /ALY sin ("ﬂﬂth/L\; (mu\®-(mrrV, /L) (84)

[a gyl

The longitudinal displacement of the cable is given by the

sum of eguations (83) and (84):

N
stnimw s, /N
Y{So,t) = ZO"" sintmw L/ VN.) SN mwt
Ml

(85}

N
o
Q.mw
+ 2}’_; ann fratts. /L Ysan {mwV, b/ UZ fow)* (everr N /LYE

It can be easily seen that this solution satisfies alil boundary
and initial conditions. The longitudinal velocity and strain
component are obtained by differentiating equation (85) with

respect to t and s, respectively:

N
Sin(mws, /V. )

_ a Cos mwt +

V{s.,t\-‘-": ma, ein (mw L/ V)

™ e N (86)

> a, mw
+21r(\-é) an SN (T 5,/1.) o8 fomTT VL) WYt Vo L
sy

L R

and

N
o cosl N,
rls.lt) = si.LU(S.,t)&‘\: + (%’;) mamﬁ)sm mwt +

o N
+ 2“-‘{.; Z‘“ cqg(«nﬂs.“_\ om ‘MHVLUL\L“‘E;:_T;V;’LP (87)

e
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Equation (86} can be used to calculate the longitudinal
velocity, V, at any time and position. Equation (87) can
be used to calculate the strain at any time and position,
if the term dependent on the transverse velocity, ¥, can
be estimated.

It can be shown by the same methods used for the free-
end case, that the contribution of the integral over Co is
zero. The finite limit,

3
(mm‘i-at"‘l < |

\lj(s.,oﬂ OmmW -

occurs in this case because sinh ¥ like cosh y, increases

when |y| increases. 1In this case y(s_ ,o) is again of order

‘q(s,,u) ‘ = Olu™)

assuring the validity of equation (85) for all times, t>0.
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SOLUTION OF THE TRANSVERSE EQUATIONS OF MOTION

The ordinary differential equations 2f transverse
motion, equation (43), can be solved using finite-difference
methods, as outlined earlier. According to the method of
Hartree, equations (39%9a) and {(43), which govern transverse

motions are, in finite-difference form:

L ax [£.(RY+ £, (P)] ta}

5, (R) -~ s, (P)

"

6. (R) -5, (Q) = L ot [£, (RY+ & (Q)] (o)

U(RY-U(P) = & [VIRY+V(P) -r(R}F, [R) - r (P)£,(P) ]~

LR -AA] - 4 S2’ [uir)uin) +uiR|uel ] ax (88)
+3 %':,'f. [ cos YRV« cos H(PY] At «©)

UIQ) - U(Q)= £ DR +VIQ) - RIE (R) - r(QH Q) ] »

[9(R)-9@] -1 5& Do) +vi@lb@f] at +

+4 W [ cos A(RY rcos §(Q)] At @)
where fp and fq are the characteristic velocities on the p
p and g characteristics; fpr(T/mnrJ% ; fq:-(T/mnr)% and
where (R), (P) and (g} denote the values of the variables
at the points 7, P and J in Figure 6. The use of average
values for the non-differential damping and cable weight
terms is consistent with the accuracy of Hartree's method.

The values of the variables at the points P and &

must be obtained by interpolation of known values at the
points 4, B and 2 in Figure 6. Paraholic interpclation must

be used to maintain a second-order truncation error. Using
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parabolic interpolation, the values of all variables at

points P and § are calculated using equations of the form:

£ (P) = £,(B) + -fz- L4 f.(A) - 3F,(B) - 5, (D)] +

s L[5+ F0-2F(A] -

£400) = £,(0)+ L[4 F (A) -3F,(D) - F ()]
+ 5—:[#-‘(0) + £4(8) - 2%,(AY] (o)

where the ratios § = BP/BA and £' = DQ/DA are defined in
Figure 6. If the characteristic velocities are known at the
peoint R, as well as at the points 4, B and D, the values of
E and &' can be determined directly from equations (88a)

and (88b} by noting that

S“R\" So(P) -
as, )

\-§

1 &% (5o R1F (P @

(90)

-5« 2dR)-%IO). 4 AE [ (Y4 £,(Q))

If the characteristic velocities are not known at peint R,
the values of ¢ and £’ must be determined by an iterative
process.
Consider calculation of the value £ for the p characteristic,.

Combining eguations (8%a) and (90a) yields:

L (0)-fo(B)vans/m] 206 M+ HRY]
Lo (D v £,(B) - 2%, (A)]  L¥,(DY+Fp(8) -~ 2%, (A)]

(1-$Y-(1-9)



which can be readily solved for 1 - £ or &:

$ .- [£. (D) -F, (B r4-as, /at)
= 20 (DY +Fo(8) - 2F(AY) T or)

L]
+ [160)-%,(8) ra s, /ot ‘}
s {[ﬁm rprweysreenll IREACROREC]

If the characteristic velocity is not known initially at

point R, the value of { can be estimated by assuming

£, (P = D_i':]bs" (92)

where E(Ddenotes the first approximation of £

Combining equations {B89%a) and (92) and solving the resulting

guadratic equation in £ yield:

[4p(0)-Fo(v) v2a5, /0]

{'“ =1- 2L (DY v Fo(BY-2F,(AY) ~ (91')
Ve
£o(D) - £,(8)+ 205,/0t1? |
£o (DY F5(B) - 24y (A)
Using an initial estimate, g(l) » lnitial estimates of the

variables at the point P (and also at point ¢) can be made

and the values of variables at point R calculated. The

calculated value of fp(ﬁ) can be used in equation (90a) to

calculate a second estimate of ¢, 5(2)' This process can

be repeated until the value of £ is determined with sufficient

accuracy. In the present case, where the longitudinal egquation

can be solved, and values of fp and fq obtained for any time

and position, such an iterative procedure will not be required.
The values of the independent variables can be

calculated from equations {88} once the values of & and &'
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have been calculated or estimated. The procedure for the
end points &, and RL and for non-end points, R, Figure 7,

are different and will be considered separately.

Calculaticon for Non-End Points

For non-end points, or points lying within region I
in Figure 7, the values of UV(R) and ¢(Rk) are obtained by
simultaneous solution of equations (88c) and (88d).
Subtracting equation (88d) from equation (88¢) and solving

for ¢({Fk), we obtain
Q(R) = {2 (0@ -UPY ]+ IVIRI+ Y (P)-r(RIF, (R)- r (P16, (9)] »
x« §(P) - TVIRI+VIQ) - r(RY £, (R) -r (QYF, (] D (@)
* 9,,—,?:\ Lo vl - viQluigl] at - o [cos Q) -cos &(P\]}‘

(93)

x l/[V(P) -V(Q) - 2 (RYF, [RY - (P) £, (P) + r (Yo (@) ]

where 9’=m,,,/mnm = (Q‘—-?\q,/(?‘_-i'?)

Adding equations (88c) and (88d) and solving for U(R) yield

U(R) = -l;{z LUPY+LIQN]* 2VIRY+VIPY + V @)+ r (P)E, (P +
v T QK (@] B (R) - [VIR) +V(P) - (RY, [R)- T (PIF, (F]] x
* §1P) - [VR+V(@) - RIG (R -r@E@] dlQY+
+q'[2 cos YR) +cos QP + cos H(Q)]
_ %1'“ 2 VR UR + uieu(P) + U(Q)\U(Q\H}



All of the values in equation (93), except perhaps r{RJ

and fp(R), are known when £ and £' are known. This equation
can therefore be solved, at least to a first approximation,
for ¢(R). This value of ¢(F} can then be used in the
solution of equation (94) for 0U(k). The damping term in
U{R} makes equation (94) highly nonlinear, so that this
equation must be solved by an iterative process. A first
estimate of U(R) might bhe:

VIR), = 3 Luw syl

()

Two or three iterations should be sufficient to determine

(R} to sufficient accuracy.

Calculation for Upper~End Point

Only a p characteristic passes through the upper end-
point, point Ry in Figqure 7. The location of the point Py
and the values of the independent variables at this point
must be determined using the values of these variables at
the points Ay, By and Cpy as no point Dy exists. The
parabolic interpolation formulasfor the upper end point are

of the form:
£.0P)= 5, (8)+ S [, 1a)-5,000] + & [F. AV £,(C) -2, (8Y)
etc.

Combining this equation and equation (90) and solving the

resulting guadratic equation for £ yield:



¢ - _E6 (R -$( v 4as, /ot ] .
204, (A) + FlC)- 24, ()]

Va
- 2[;,(3\+-{—,(R\-2AS.IM] (96)

. [f,(m-ﬁfowns.m ?
=1 2(Fp AV + $(C) - 26, (BY)

This equation is used when f?(ﬁ) is known. When fp(R) is not
known initially, an iterative scheme similar to that for the
non-end points can be used.

At the upper end point the velocity U(FR, is specified
for all times. Equation (87c) can thus be solved directly
for ¢(R), with no approximations, once the point P is defined,

and the wvalues of the variables at P are calculated.

Calculation for Lower-End Point

Only a ¢ characteristic passes through the lower-end

point, peint R, in Figure 7. The location of the point QL

L
and the values of independent variables at this point can

be determined using values at the points Ar s DL' EL and RL.
Equations {95) and (96} can be used to determine £' and the
values at point QL' if the values at points p and E are used

in place of the values at points 32 and (¢ respectively and

i 1 d by f :
fp is replace v jq

£4Q) .g%(o)+%[ﬂ(m-.%.‘(E)]+5,‘;'_—[‘F$(A\+&(E)-?_¥$(D)] (97)

and similarly for £'.
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For the fixed-end case, the transverse velocity at

the cable lower end is:

UIR,) = C sin #(R);

Substituting this value into equation (88d) gives a nonlinear
egquation for ¢(RL). This equation can be readily solved by
an iterative process. A good first approximation for ¢(RL)
is:

@ (R = P(A)

Two or three iterations should be sufficient to determine
U(RL) and ¢(RL) with sufficient accuracy.

For the free-end case, the lower boundary condition
is given by equation (63}:

P (R

35,

=0

The value of ¢(RL) must be such that this condition is
satisfied. Using a parabolic interpolation formula such

as equation (97) it can be shown that

oP(R
7o) = s[4 em) -38m)-0R)]
(98)
o
"SL')%'(;EQ = —5'}5_5_[4U[R*) -3UIR) *U(R,):l (b)

where Ry and R, are pecints defined in Figure 7.

Since the values at Rl and R. are calculated before the

2

value of R equation (98a) can be sclved for ¢rRL). This

Ll
value can then be substituted into eguation (88d) which can

be solved for U(RL).
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An alternative method for determining ¢(RL) and
U(RL), which may be more accurate is available. Noting

that everywhere on ALRL’ 8¢X83050, equation (57b) becomes:

2 -

or, in finite-difference form:
SVUAY . v 3V(R
PR = (AN 117y S5, | F(R) "Ts.—") At (99)

The values of &U(A;)/8s, can be determined using egquation

{(98b). As an initial estimate

JUIR) « 3U(A)
2%, 9%,

can be assumed. Equation (9%) can be solved for (RL). This
value can be substituted into equation (88d) which is solved,
by iteration, for U(HL). The value of aU(RL)/BsO can then

be calculated using equation (98b} and the process repeated.
This process is much less direct than that using only equation
(98a), but has the advantage that variations of the variables

are considered along the characteristic path.



CALCULATION OF CABLE SHAPE

In the preceding sections, methods are presented for
calculating the longitudinal and transverse velocities of
the cable. The displacements or shape of the cable is
generally of greater interest than the cable velocities.

In this section, methods of calculating the cable shape as
a function of time are considered.

Two methods are available for calculating the cable
shape and thus the displacements of any point on the cable.
The first is by numerical integration of the velocities
starting at time zero. The second is by numerical integration
along the cable using the calculated strains and cable angles.
The first method admits the possibility of an error which
increases monotonically with time due to the cumulative
effect of the errors inherent in the numerical integration.
Such difficulties have been found by Nath (21). The errors
in the second method should be inherently smaller since,
at each time increment, the integration is re-initialized from
a known position, that at the upper end of the cable. For
this reason the second method is used here.

The displacements of the towing point (cable upper end)
relative to its steady-state position is assumed to be
specified by Fourier series. For convenience, the cable shape
will be calculated in the @ - B coordinate system of Figure 9.
The displacements of the towing point in the ¢ - B system
can be calculated from specified displacements in the n-s

coordinate system of Figure 2:
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« = - 5, cos JIL) +&, sin ()]
66 = 6Mg09 &(L\ —65 S\ncp(\_\

The relative position of two points on the cable are
determined by the average cable strain and average cable
inclination between the two points. It is convenient to
calculate the relative cable positions at the specified
grid points where cable strain and inclination are known.
Thus for two adjacent grid-pcints P ang Pn-l' as shown in

Figure 9:

Aot = X -X = = C cos [(&m*‘o"")/z]

- (100)
A3 =28,-8..2 € sin UQ...*»Q,,,..\/?.]
where ¢ is the chord length shown in Figure 9.
The location of the ¥'th grid-point is given by:

N
X,= &+ z Ao

P (101)
Bu= O¢ + Z AG

i

where the towing point is defined by n=0.
The arc length & in Figure 9 can be calculated using the

average strain at the two end points:

a- = e.;—‘.!(rmb-rm_‘)

m

where r and r _, are the elongations,

1+€, at the points P, and Pr_1v respectively.
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The chord leagth 2 is defined by the arc length and the

difference in angle between the two end points

ad = @,

If the cable shape between any two points is approximated by

a segment of a circular arc and the change in angle 4¢ is

assumed small, i.e.,

Ad <« )

The chord length is given to a very good approximation by:

_ R tan (AdA)
c =a { + tan? {ad/2)

(102)

Equations (100), (101) and

{(102) can be used to calculate
the offsets of every grid-point. These offsets are:

N
0( = + L COs
" “ 2 Z 1+‘Ecm (DQ«. -5'“
N (103)
XA I-tan'(ad.) 3
= — — SN
B“ 63 " = ;(Fmﬂ‘.... \ﬁ'tqn‘(ﬁQm\ "

where A4

(& -8..)/2

E)M (&.+8_)/2

Equations (103) are solved for each time increment using the

calculated angles &nd strains at that *ime.
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CALCULATION OF STEADY-STATE VARIABLES

In order to calculate the dynamic response of a cable
system, it is first necessary to determine the steady-state
solution. A number of methods are available for calculating
steady-state variables. The method described by Cuthill
(24) appears to be the best available method. The computer
program given by Cuthill is sufficiently flexible to handle
almost any cable or cable-towed body system. Using this
program, the cable tension and cable inclination can be
calculated at any desired spacing along the cable length.

A detailed description of Cuthill's program is given
in Reference (24). The required inputs are cable geometry
(length, diameter, density) and any specified tension and
cable angle at the lower (body) end of the cable. If there
i1s no body at the lower end of the cable, the cable will be
straight and have an inclination equal to the cable critical

angle. The critical angle is given by:

1
Sin &m _ 3 % ar
cos Q

T Ch P CF

R

When there is a towed body, the cable angle at the body is

determined by the body lift-drag ratio:

@, = tan'(L,/0,)
The tension at the body is given by:

Ty = D, cos ) + L sin (o)



In using Cuthill's program, care must be taken to define
the value of ¢b in the correct gquadrant.

There are several options in Cuthill's program for
specifying the external drag coefficients of the cable. One
option uses the drag coefficients given by Whicker (5). As
these are very close to those used in the present analysis,
this option can be used with negligible error.

It should be noted that Cuthill's program does not take
the effect of cable elasticity into effect. For typical
tensions and strains (€=0(10-3)) the effect of elasticity
on cable steady-state inclination and tensions will be very

small and can be neglecied.



COMPUTER PROGRAMS

Two Fortran IV programs have been developed for
calculating the dynamic motions and shape of cable systems
having a free lower-end and having a lower-end fixed relative
to the steady-state towing point. Source listing for these
orograms, and descriptions and examples of program input and
output are given in Appendices I and II. The steady-state
cable shape is calculated using a Fortran 1V program developed
and described in detail by Cuthill.

The two programs for calculating the dynamic motions
and shape of the cable are identical except for the equations
and terms describing the lower-end boundary conditions. A
common flow chart for both programs is given in Appendix ITT.
Each program is divided into two main parts, one for calculating
longitudinal motions, the other for calculating transverse
motions. The longitudinal motions are calculated and the
results used to calculate the transverse motions. Because
of the contribution of transverse motions to strain and tension,
an iterative process is required. Iteration is also required
in the solution of the transverse equations of motion because
of the large magnitude of the nonlinear external damping term.

These computer programs have been used to calculate
the dynamic response of a number of cable system having free
and fixed lower ends and appropriate steady-state solutions.
These calculations were carried out not only to illustrate
typical response, but also to show the effect of various
parameters such as external damping. Calculated results are

discussed in the next section.
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DISCUSSION OF CALCULATED CABLE-SYSTEM RESPONSE

The computer programs described in Appendices I and IIX
have been used to calculate dynamic response cf typical cable
systems for a number of assumed operating conditions. The
calculations are primarily designed to illustrate the effect
of important and critical parameters on response and to
verify the accuracy of the computer programs. Calculations
have been carried out for non-faired cables of steel and a
highly elastic material (such as polypropylene}. The assumed
cable-system geometry and the calculated results are discussed

in the next sections.

Assumed Cable-System Characteristics

Since the primary purpose of this investigation is
to develop a computational technigue, no attempt has been
made to make systematic calculations. All calculations have
been carried out for a typical non-faired cable having the

following geometric properties:

Steel Cable Plastic Cable
Cable Length-~L 1000 feet 1000
Cable diameter~dc 0.2 feet 0.2 feet
Cable density—pc 15 2

Modulus of Elasticity-E 30 x 10%psi ¢.2 x 10°psi



_94..

A water density of two, corresponding to salt water, has
been used. The following values have been used for cable
external-drag cocefficients:
Cg = 0,10
kCa = 0,004

The calculations designed to check the accuracy of the
computer programs have been carried out for cables which are
initially horizontal (¢050) and which have zero towing velocity
(C20). The steady-state tensions assumed for these calculations

are as follows:

=3
il

Cables with free ends: 20 x s, pounds {(0-20,000 pounds)

k3
|

Cables with fixed ends: = 10,000 pounds

In order to check the calculated longitudinal response, the

following motions of the towing point have been used:

S, (L,&) =10 smt (0,210, 0,21)

$.(L,t) = O,

In order to check the calculated transverse response,

the following motions of the towing point have been used:

S.(Lt) =0

Sy L) =-cost (Q,=1,wal)

or

Ut)l= sint

In both cases zero external damping has been assumed.
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Additional calculations have been carried out to
study the response to combined longitudinal and transverse
motions of typical cable systems having more varied and more
realistic operating conditions. Calculations have been
carried out for two towing velocities (10 and 20 feet per
second), two amplitudes of towing point motion (1 and 10 feet)
and for steady-state solutions corresponding to different

assumed towed-body characteristics.

Verification of Numerical Calculations

The numerical calculations have been checked for the
simplified cases noted earlier. Both the calculated
longitudinal and transverse motions have been checked by
hand using appropriate analytical solutions. Calculated
longitudinal displacements and dynamic tension for cables
with fixed ends and free ends have been checked using Equations
(73), (75}, {(85) and (87). In all cases results are found
to be in very good agreement. Comparisons of calculated
dynamic¢ tensions are shown in Figures 10, 11 and 12. Calculated
transverse velocities have been checked for cables with fixed
ends using the analytical solution discussed below. Again
the results are in good agreement, as seen in Figure 13.

An analytical solution for transverse motions in a cable
with a fixed lower end can be obtained from eguations (57a)
and (57b) if the problem is suitably restricted. 1In particular,
if the cable is assumed to be neutrally buoyant and thus

initially horizontal, is assumed to have uniform tension
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and is assumed to have no longitudinal motion (VZ0), eguations

(57a) and (57b) reduce to:

%‘L‘EJ + -r“;; %-$° = O al

n
(104)
?—- + r‘gg =0 (b)

Assuming that the velocity and inclination can be defined in
terms of a transverse displacement X:
- 3%
U = 3%

. _ L 3X
¢ =-+55

equation {104b) is identically zero and equation (104a) becomes:

X T X .o
dt* e r 38}

{105)

Since 7 and » are assumed uniform and constant, this is the

wave equation with velocity of propagation

V=3-V:v‘1r‘-r

1 n

which is, as expected, the characteristic velocity for
transverse motions. Equation (105) can be solved by the
same method used to solve equation (66). The assumed boundary

conditions are:
X (o,x) = O

U Lt > a, sinmwt

ma |

|

The transverse displacement is given by:
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[}

x N
sin (mws, /N, )
X {s.,t) =j [MZ‘QH s\p (mwi/V,) s\ mwt +

]
o N at
+ 2(\!}) Z s\ (mTrs, ) sin {omtiV, £/L) /O (o™ {mw v /324" (206)
Wz m=l
The transverse velocity is given by:

. .
s\wW {mws, /V,)

— E = Syh Mt +

U(S. :'t) = ‘“:'am syt {m L /N)

N
AN Msn ALY ) QT
+ Z(t)zgﬂn (ﬂ'ﬂns‘ L‘ S\t [rmTINLE /L L ™ (o) *— (T N h..’z

s (107}

Equation {107) has been used to obtain the hand-calculated

values shown in Figure 13.

Effect of Sensitive Parameters

The accuracy of numerical solutions is sensitive to
two parameters or values. The solution of the longitudinal
equations of motion {equations (73), etc.} is sensitive to
the number of terms, ¥, used to approximate the infinite
series in these solutions. The solution of the transverse
equations of motion {equations (93), (94), etc.) 1is sensitive

to the assumed spatial increment Aso.



The infinite series in the solution of the longitudinal
equations of motion are convergent, but the number of terms
required to approximate the infinite series with sufficient
accuracy must be determined. Several studies have been carried
out to determine suitable values of M, the number of terms
in the series. Typical results of these studies are shown
in Figures 10, 11 and 12. Values of M of 10, 20 and 40
have been considered, although computed results are only
shown for 10 and 40 terms in most cases. Figure 10 shows
calculated dynamic tensions for a plastic cable with free
lower end. Figure 11 shows calculated dynamic tensions for
a steel cable with free lower-znd. Figure 12 shows dynamic
tensions for a plastic cable with fixed lower-end. Tensions
calculated by hand from the analytical sclutions are also
shown.

It is clear from Figures 10-12 that at least 40 terms
{M=40) are generally reqguired to give a good approximation of
the initial tension wave front. Maximum tensions calculated
with 10 terms, differ considerably from maximum tensions
calculated with 40 terms. The difference is particularly
noticeable for the case of the steel cable at 0.116 seconds.
Based on these calculations, 40 terms have been used in all
subsequent calculations.

The accuracy of the methecds used for solving the
transverse eguations of motion will increase as the spatial
increment Aso is decreased. Because computational times
increase as the inverse square of As it is desirable to

use the largest suitable value of Aso. It was decided that



50 feet was a maximum suitabie spatial increment for a
1000 foot long cable.
of plastic cables were carried out with 50 and 20 foot
increments.

calculations for 10 foot increments,

unnecessary.

calculated values,

in graphic form.
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Because of the small differences in the

but this appeared

Calculations of transverse motions

Originally it was intended also to carry out

it 1s not feasible to show the results

Typical results are therefore shown in

Table II.

3223; t = 3.21 seconds | t = 6.095 seconds | t = B8.02 seconds
tion

5 1004 1004 U 100¢
As,+ 50} 20 50 20 50 20 50 20 50 20 50 20
1000 |.07|.07(-.027-.02} ,19| .19}t=-.07)-.07| .49, .99| .87: .88
900 .28(.29| .10y .10 .52| .52)-.1B|-.18| .58] .55{ .84 .85
goo |.60|.60| .21| .21| .80] .78{-.27|-.27| .15] .o8| .72| .72
700 .831.841 .29 .30(1.09|1.05)-.28(~.30|~.19!~,26]| .55 .55
600 .97+.97 .34 .34)1.38(1.37{-.21-.22|-.38|-.41] .35} .36
500 .83(.841 .34} .35]/1.56(1.58|-.09|-.09|-.47|-.49| .14, .14
400 .861.87| .30f( .31,1.57)1.60| .05 .05|-.48{-.50| ,10{ .10
300 .64(.65| .23 .2311.39[1.42, .18, .19|-.43}~-.44y-.32}-.32
200 .35|.35| .12| .12|1.03{1.06; .29} .30|-.33|-.33|-.50|~-.51
100 .09(.06| .03 .02 .55 .56 .36, .37/-.17|-.18]~.62|~.63
0 0 0 0 0 0 0 0 .39 0 0 .66|~.67

Table TII - Effccor of Spatial
Transversce Motions of
Fixed Lower End (CP:O,

fncromoent /1o,

a Plastic

¢ =0)

on Caleoulatrd
Cuabzle with
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The minimum acceptable value of the spatial increment
ﬁso is a function of the cable geometry, the velocity of
propagation of transverse waves and the frequencies of towing-
point motions. As the velocity of propagation decreases or
the freguency of motions increases, smaller values of Aso
will be required. As the cable length decreases, a smaller
value of ﬂé% should be used. It should be noted, however,

that computaticnal times will decrease:zwith decreasing cable

length.

Illustrative Calculations

Calculations of combined longitudinal and transverse
motions have been carried out for a number of cases to
illustrate the effect of various parameters such as damping,
towing velocity and initial cable shape on cable motions.
All calculations have been carried out for simple harmonic
towing point motions of frequency one radian per second
(r = 6.28 seconds). Most calculations have been carried
out for the case of neutrally-buoyant plastic cables which
are initially horizontal. Two sets of calculations have
been carried out for cases where the cable is not initially
horizontal. Typical calculated results are presented in
Figures 14-19 and Tables III and IV and are discussed below.

Pigure 14 shows the effect of longitudinal damping,
as described by equation {76}, on the dynamic tensions in

a plastic cable with a free end. It can be seen that the
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effect of damping is large. The unusual behavior of the

decay curves is due to the nature of the damping term which

is not really correct at zero cable inclination (see Figure 5}.
It can be seen that cable dynamic tensions are largely

damped after a very short time. The affect of longitudinal
damping on cables with fixed lower ends or with large towed
bodies will, however, be much smaller. The cffect of damping
on steel cables will also be much smaller because of the

larger cable mass.

Figure 15 shows calculated mid-length {so=500 feet)
transverse velocities and cable inclinations for a plastic
cable with free lower-end and zero towing velocgity. These
results indicate clearly the large effect of damping on
transverse velocity. Figure 16 shows calculated transverse
velocities and cable inclinations at sO=750 and So=500 for
a plastic cable with fixed lower-end and zerc towing velocity.
Damping again has a large effect on transverse velocity.
Figure 16 illustrates that at distancde from the towing point,
damping causes an increase .n cable inclination. Tables III
and IV show the effect of towing velocities of 10 and 20 feet
per second on motions. Increasing towing velocity causes
an increase in transverse velocity and cable inclinaﬁion.

The effect of towing velocity is moderate and is much smaller
than the effect of damping.

Figure 17 illustrates the effect of towing point motion
amplitudes on transverse motions of a plastic cable with
fixed lower—~end and constant steady-state tension of 10,000

pounds. The steady-state inclination is assumed to be zero
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Long.

Posi~ t = 1.66 seconds t = 2.36 seconds
tjézn ¢ =0 ¢ =10] ¢ =200 ¢ =0 ¢ =10| ¢ = 20
Ul 100¢4) U |100¢| U {100¢ U |100¢ U 11004 U | 100¢
1000 9.926/10.64]9.96|11.15(9.96(11.68|7.05/11.42}7.05312.19|7.05/13.01
900 5.65 4,4975.81|4.82|5.98{5.18{6.86(6.7517.27]7.37(7.74| 8.05
800 3.31{1.98]3.4212.14|3.5412.3114.78] 3.42}5.03}3.76|5.29[ 4.15
700 2.04f .98]2.1111.05 2.l7il.13 2.9711.7813.1211.,96(3.29] 2.15
600 1.26f .5211.30) .55|/1.33] .59)1.86/1.00{1.96]1.0912.06]1.19
500 .73 .28 .74 .30 .76f .3211.21] .e0]1.26] .65(11.31 .70
400 .231 .09 .23 .10{ .23} .10] .78] .36 .80 .39 .83 .42
300 .01 0 .01 0 .01 0 L4410 .19 .45 .21 .46 .22
200 - - - - = - .12 .05 .12} .06% .12 .06
100 - - - - -+ =1 .01 o | .orf o | .o1] w
0 - - - - - - 0 0 0 0 0 0

Table III ~ Effect of

Towing Velocity on Transverse Motions

of a Plastic Cable with Free Lower End (CF=1.O)

Long.

Posi- £t = 1.63 seconds t = 2.32 seconds
tion ¢ =0 c = 10 c =0 ¢ = 10
% v i00¢ i 100¢ o 100¢ U 1008
1000 9.98 11.25 | 9.98 11.88 7.30 11.9 7.30 12.85
900 5.95 4.20 5:14 4.54 4.88 6.22 4.66 6.83
800 3.51 1.73 3.66 1.88 4.17 3.09 4.31 3.42
700 2.20 . 85 2.29 .91 2.92 l.61 3.08 1.78
600 1.41 .45 1.46 .48 1.99 .92 2.09 1.00
500 .98 .26 1.01 .28 1.39 .54 1.45 .59
400 .25 .06 .25 .07 1.02 .35 1.06 .37
300 - - - - . 77 .23 . B0 .25
200 - - - - .54 .15 .56 .16
100 - - - - .09 .03 .09 .03
0 - - - - 0 0 J 0

Table IV - Effect of Towing Velocity on Transverse Motions
of a Plastic Cable with Fixed Lower End (CH=1.O)
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everywhere. As the motion amplitudes increase, and
damping becomes relatively more important, transverse
velocities decrease markedly. For an increase in amplitude
from one to 10 feet, a decrease in transverse velocity of
50 percent or more OCCUrS. A phase shift is also evident.
Figure 18 shows the transverse motions of a similar
plastic cable having a steady-state inclination of 30 degrees
at the lower-end. This corresponds to a towed body having
a lift-drag ratio of -0.58. The tension at the lower-end
is assumed equal to 10,000 pounds. Towing point motion
amplitudes of one-foot have been assumed. The steady-state
inclination and tensions were calculated using the program
of Cuthill (24).
Figure 19 shows calculated transverse motions of a
steel cable with fixed lower-end which is being towed at 10
feet per second. The steady-state cable inclination is assumed
to be egual everywhere toO the critical angle of 43.5 degrees.
The assumed tensions correspond to a lower-end (or towed body)
tension of 2000 pounds. Towing point motion amplitudes of
0.1 foot have been assumed; if larger amplitudes are assumed,
negative tension (compression) occurs after a fraction of
a second (real time) and calculations are terminated.
Required computational times are inversely proportional
to the square of the spatial increment Aso and to the sguare
root of the maximum tension. Computational times are also
influenced by the amplitudes of towing point motion and the
cable geometry. Increasing input amplitude from one to 10

feet can cause an increase of 50 percent or more in
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computational time because of the increase in the number
of iterations required. Computational times will also
increase as the steady-state curvature (B¢O/aso) increases
because of the increasing significance of the transverse
displacement term on strain and tension. Computational
times on a CDC 6400 computer are typically 5 to 20 times
real time for 1000 foot long cables with spatial increments

of 50 feet and average tensicns of 10000 pounds.
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CONCLUSIONS

A number of interesting conclusions can be drawn
from this investigation. Significant conclusions include:

1. The magnitude of internal damping and bending
(shear) forces are small and these forces can be neglected
in almost all cases. The indlusion of one or both of these
terms in the equations of motion has a profound effect,
however. These terms are of higher order than other terms
in the equations and make the equations of motion parabolic
rather than hyperbolic. Parabolic eguations cannot be
solved using the method cof characteristics.

2. Assuming that the cable is inelastic makes the
longitudinal equations of motion parabolic so that the method
of characteristics cannot be used for these equations. It
also prevents solution of the equations of motion by the
analytical methods employed here.

3. If internal damping and bending {(shear) forces
are neglected,cable system motions are governed by a set of
four quasi-linear hyperbolic partial differential equations.
If the cable is assumed inelastic¢ these equations become
identical with the equations derived by Whicker, except for
the transverse added mass which Whicker erroneously neglected.

4. The set of four equations including elasticity
effects can be solved using the method of characteristics,
but computational times will be excessive due to the large
longitudinal characteristic velocity which is equal to

cable material sonic velocity and 18 typically 4000 to
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20,000 feet per second. The transverse characteristic
velocity, on the other hand, is typically only a few
hundred feet per second.

5. An analysis based on a non-dimensionalization
process such as used to derive the well-Kknown boundary
layer eguations in fluid mechanics, can be used to simplify
the equations of motion, particularly the longitudinal
equations of motion. These equations can be essentially
uncoupled from the transverse equations and then solved
analytically for reasonable, linearized boundary conditions.
Calculations can then be carried out on a reasonable time
scale determined by the transverse characteristic velocities.
As a result, computational times can be decrease” by a
factor of 10 or more.

6. Longitudinal damping has a significant effect on
dynamic tension of cables with free ends. Dynamic tension
may be largely damped after a relatively short time. Longi-
tudinal damping will have a lesser effect on dynamic tension
in cables with fixed ends or with large towed bodies.

7. Damping has a significant effect on transverse
motions. Transverse motiongs calculated with typical transverse
damping (CR=1) are much smaller that those calculated with
no transverse damping. The amplitude of towing point motion
also has a highly nonlinear effect on the transverse motions.
Towing velocity has only a moderate effect on transverse motions.

8. Using a CDC 6400 computer, computation times of
approximately 5 to 20 times real time are indicated for a

cable length of 1000 feet, a spatial increment of 50 feet
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and an average tension of 10,000 pounds. Computational

times do not vary significantly with cable material.
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APPENDIX 1

COMPUTER PROGRAM CABL]1 FOR CABLES
WITH FREE LOWER ENDS

This Fortran IV program which is designed CABL1,
calculates the dynamic response of a cable having an
arbitrary steady-state shape and a free lower-end. The
free lower-end corresponds to a cable with no towed-body
or a cable with a very small towed-body whose effect on
cable lower-end motions can be neglected. The cable is
assumed to have a circular cross-section and uniform
properties along its entire length. The cable is assumed
to be fully submerged in a fluid of uniform density and
current. Cable motions are assumed to be excited by
prescribed harmonic motions of the towing point. A source
listing for this program is given in this section.

The program is divided into four basic parts. These
are: calculation of the time increment; calculation of
longitudinal variables and motions; calculation of transverse
motions and variables; and calculation of cable offsets or
shape. The longitudinal variables are calculated using
analytical solutions, equations (73)-{(75). The transverse
variables are calculated using equations (88). The effect
of transverse motions on cable elongation and tension is
calculated using equation (67). The cable offsets are
calculated using equation (103). Iteration is used to
account for the highly nonlinear transverse damping and the
effect of transverse motions on cable elongation. A flow

chart for the program is given in Appendix III.
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The basic program inputs are cable and fluid physical
characteristics, towing velocity, cable steady-state shape
and tension, desired spatial increment for calculated motions
and characteristics of the towing point motion. The spatial
increment must be constant. If the cable operates in a
uniform current, the towing velocity can be interpreted as
the sum of towing and current velocities.

| The towing-point motions are specified by two orthogonal,

time~dependent motions in the z and ¥ direction of Figure 1.

The motions are described by Fourier series:

L)

O, (1) = Z Q. SN [rmwt)
m=l
ns WY

8\, (1) = Z 0, <n (mwt)

~zy
The numbers of terms ¥X and ¥Y are independent, and can have
any value from one to eight. The fundamental frequency w
is specified.
The allowable time increment is célculated from the
prescribed spatial increment and the maximum characteristic

velocity for transverse motion at the initial time ¢,
At = O.q Ago /[‘F')"ﬁ'

The program determines the maximum tension at each initial
time. If the calculated values of £ or &' are less than zero,
the program increases the time increment and goes back to

the beginning of calculations.
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The values of all variables at the points P and ¢
in Figure 6 are calculated using linear interpolation

rather than parabolic interpolation.

Program Mnemonics

A list of mnemonics used in the programs is given
below. Mnemonics for input variables are given in the
source listing and are not repeated here. The mnemonics
are given for control values, calculated constants and

working values and variables.

Control Values

NS Grid point identification (NS = 1 at towing=-point,
NS=NDEL at lower end).

NDEL Number of grid points = number of spatial increments
plus one.
NX Number of terms in the series for horizontal towing-

point motion.

NY Number of terms in the series for vertical towing-
point motion.

NT Maximum number of terms in the series for Gx(t)
and § (z).
' Y

Calculated Constants and Working Values

A Cable cross-section area a,.

AN(K) Coefficient of the k'th harmonic in the series for

longitudinal towing-point motion, a,-
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ANP{K) Coefficient of the k'th harmonic in the series

for transverse towing-point motion, aé .

VA Velocity of propagation of longitudinal motions V.

VTM Velocity cf propagation of transverse motions,

CMN Total transverse cable mass per unit length - m, .

TMAX Maximum tension at an initial time, tn

RMAX Corresponding maximum extension at an initial
time, tn

™ Real time, tn

DELTH Increment in time At,

RATO,
RATP

Constants § and &' locating points P and @ in Figure 6.
TP,TQ Tensions at points P and &.

RP,RQ Extensions at points P and €.

VP,VQ Longitudinal velocities at poeints P and Q.

UP,UQ Transverse velocities at points P and ¢.

FALFP, fTransverse characteristic velocities, V,+ at points

FALFQ  » and 4.

FALF(N) Transverse characteristic velocity Vi, at the
point ¥ where N¥=1 is point 4, N=2 is point B,
N=3 is point B, N=4 is point D.

pUDS1 Value of the derivative aU/asO at the point AL.
DUDS2 Value of the derivative 80/830 at the point RL'

DFEDS Value of the derivative 8¢0/330.

Variables

R{1,NS) Extension r at given grid point and at initial
time, t_.
n
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R{2,NS} Extension r at end of time increment, t=t, +At

T(2,NS) Tension T at given grid point and at initial
time, tn

T(3,NS) Tension T at end of time increment, t=t +ht .
U(1,NS) Transverse velocity ¥ at initial time, t, -

U(2,NS) Transverse velocity U at end of time increment,
t=t +At,
n
V(1,NS) Longitudinal velocity V at initial time, tn.
V(2,NS) Longitudinal velocity V at end of time increment,
t=% +At,
43
X{1,NS) Transverse displacement X at initial time, ¢ .
X{2,NS) Transverse displacement X at end of time inerement,

t=t +At.
"

Y{1,NS) Longitudinal displacement Y at initial time, ¢, .

Y(2,NS) Longitudinal displacement Y at end of time increment,
t=t +4¢,
»n

PHI{2,NS) 1Inclination angle ¢ at initial time, ¢,

PHI(3,NS) 1Inclination angle ¢ at end of time increment,
t=f +AL.
n

Program Inputs

The required program input variables and corresponding
formats are described in detail by comment statements in the
program source listing given below. The variable mnemonics
and dimensions are also described by the comment statements,
The formats are designed to accommodate any normal cable
geometry. It should be noted that cable modulus of elasticity

divided by 106 is used in the input. The total number of data
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cards required is 4 plus NDEL where NDEL is the specified

number of grid points on the cable.

Program Qutputs

The program output variables are described in detail

by comment statements in the program source listing. The

variable mnemonics and dimensions are described by the

comment statements.

transverse velocity,
cable offsets in the
printed out for each

cable lower~end) and

Sample Problem

The calculated longitudinal and

cable tension, cable inclination and

2-8 cocrdinate system of Figure 9 are
specified grid point (distance from the

for each calculated time increment.

A printout of a sample run is given following the

program source listing. This printout is for a steel cable

having a constant inclination equal to the cable critical

angle of 43.5 degrees. The assumed cable characteristics

and operating variables are:

CL
CD
CRHO
cMOD

WRHO
CR

H

t

n

1000 feet

0.2 feet

15 slugs/foot3

2

(E 30 x 190

30 pounds/inch
pounds/inch?2)

2 slugs/foot3

1.0



Calculated results for

given.

DELSO
VT

oM

TF

NX

NY

NM

AX(1)
AY(1)
PHI(1,NS)
T(1,NS)
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50 feet

= 10 feet/second
= 1 radian/second
= 10 seconds

= 1

= 1

= 40

2, all other AX{N)=0

It

-1, all other AY{N)=0

0.762 radians

(10,000+ 0.6 ﬁg) pounds

the first two time increments are
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PROGRAM CABLI

SOURCE LISTING

CIMENSTUN SU(lLO);V[Z,lLu);TIB,IIU).R(Z;llO)*Y(Zvllo),U(Z,LlUJ.PHICABLl

L3110 X022 0102010010y YLIYLLO) CakLld
UINthIDN_AN[b);ﬂX{h}.AY(&),ANP(NJ;FALF(Q},UFEUS(lgllO),thﬁtllﬁ) CAaBL) &
CABLL L
CaBLlL
CALCLLATEION OF CAELE MU IUNS Fur A CABLE wllh FREE LUWER END CABLLY
COMBINED LONGITULINAL avi, THANSVERSS mUTIONS CABLILIL
) CABL1E
LONGITUDENAL WCTICNS CALZULATEL FRO- ANALYTICAL SULUT luly WiTh CAELI
CORRECTIUN FUR ThHE EFFLCT OF ToadsVirSE UDISPLACEMENTS CABLL
C4RrL1
TRANSVERSE MUTIGNS CALCULLATED ULING THE METHOD UF CHaRACTERTISTICS CARL]
ANLC CCMPLETELY COLPLZL TRANSVERSE MOTIONS CaBlLl
CABLL
CABL1
RELUIREL PRUGRANM [P0 CABL1Y
Cubll
TEE TLTAL WUMBER CF InPUT CARLS RYOULRELC IS 5 PLUS NLEL CanLl
whERF NUEL 1S THE NUMSER UF SPATIAL INCREMENTS ALGCNG THE CARLE LaBiLl
CauBL1
CAELL
THE FIKST CARD CUNTALNS THE FOLLGWIOU UATA AT THE FGLLUWING FORMATCAEL]
CABL]
CL = CAELF LENGTH IN FEET F10.5% Caitl
ChL = CAGLFE UTAMETER IN FiecT FLlU.5 Cabrl
CRHL = CABLE MASS LENSITY I8 SLUGS Per CUBIC FOOT FlDeS CABL1
CrCL = CABLE MLOULUS LF eLASTICITY 1N P51 UIVIDED LY 1000000, CnblLl
F10,%
WRHUG = WATER MASS ULeNSITY ©In SLUGCS FER CULLC FOLT FL1045 CastLl
Cr = nNOGRMAL DRAG CLEFFICEENY FUK STEADY FLOW Fl0.5 CapLl
CELSG = INCREMENT IN CABLE LENGIH IN Ful  Flues CaBL1
VT = TCGWING VELGCITY [ FEET Per SECURL  FLU.Y CabBL1
CaBL1l
THE SECOND CARD CONTALINS ThHE FULLUWING UATA CABRLL
CABLY
€M = FUNLENMENTAL FREGULENCY UF cXCITATION IN RAUIANS PER SECOND CABLIL
FlO.h
TF = XEAL TIME AT wWHICH CALCULATIONS Axl TERMINATED IN SECUNDS CARL]
FI1O.5
NX = WUMBFR OF TERMS IN FUURIER SERIES FUR LELTa{ X ) 15 CAakLl
NY = NUMBFR OF TERMS IN FUURIER SLRIES FOR DELTA (Y ) I CabiLl
NFM = NUMBER OF TERMS USEL TO APPRIUXIFATE THL SERIES IN THE CablLl
LONGTTULRINAL SCLUTICNS 19 ' CablLl
CAbL]
THE TeilRD THROLGH ThIRD PLLY WoEL CA<DS CUNTAIN THE FOLLOWING LATACAHL]
ChatLl

SC L NS ) = LUNGLITUDENAL PUSTITICKN L WS=1 FUR SO=Ls NS=nLEL+1 FNR CabLl

W20 S R —

16
11
12
13
14
15
le
17
le
19
20
21
e
23
24
25
2é
2

2u
24
30
31
3z
33
34
3y

36

37
39
iy
44
41
42
43
44



ﬁ(ﬁfﬁﬁ(ﬁfﬁrﬁﬁ(ﬁfﬁflﬁtﬂf‘fiﬁfﬁfﬁfﬁrfrfﬂflﬁ

OO OO OO OO

[Sn e

20

- 119 -

SC =0 ) Fl0,2
T 0 1eNS ) = STEADY-STAFL TENSILN AT SU € NS ) FlQ.2
PRI ( 1,NS )}

[ Va0 ]

THE FOURTH PLUS NUEL CARD CONTAINS THE FULLOWING DATA

AX L 1l daveaasBX ( & ) whirt AX N ) IS THE COEFFICIENT OF THE Nt

Tk TExM IN THE FOURIER SERIES FOX DELTA SUB X

THE FIFTH PLUS NDEL CARD CONTALNS THE FCLLOWING DATA

AYLL) s eaessAY(E) WHEKE AY(H) S ThHE CUEFFICIENT OF THE N'TH

TERM IN THE FUURIER SEk[tS For LELTA Sub Y

PROGRAN QUTPUT

THE FCLLCWING OUTPUT IS PROVIGEL FOK EACH TIME INCREMENT

TIME = « THE REAL TIME FUK WHICH THE LALCULATED RESULTS APPLY

50 = v XL = y YO = .

WHERE SC IS THE LONGITULINAL FUSITION ( S0=L IS THE TOWING POINT

XC IS THE COORDINATE DELTA SUE ALPHA Fur s@
YC 15 THE CCCRUINATE DELTA SUb LETA FOR 50

Sc = r U = s PHI = y T = y V¥V = .
WHEKE  SC IS THE LUNGITULINAL PESITIGH
U IS THE TRANSVERSE VELOCITY AT S0
PRl IS THE CABLE I4CLINATIGN AT 5C
T IS THE CABLE TGTAL TENSIUN AT 50
VIS THE LUNGITUDINAL VeLOCITY AT 50

READ (2'l410' CLUCU'CRHtrCMEB,NKHU’CHrUELSU'VT
CMOL=CrLD*144000000.

CELTA=L.+CL/DELSO

NCEL=LELTA

REAUD (2e1415) OMyTF NXyNY, WM

PI=3.141¢

6=232.2

A=P1=Co%%2/4,

CC 20 NS=1,NDEL

REAC {(2,1420) SOUINS) s TULWNSYaPHItL48S)

UlLoNSY=VTRSINIPHI(LyNSY )

PRIT24NSE=PHI{1,NS)
RELeNSY=TLL NS/ {ARCMOD) +1 .
VILaNS)I=VTRCOS{PHI(1,NS5) )
X{LeNS)=0Q.

T{Z2«NS)=T{14NS)

CALCULATION OF CABLE STEADY STATE CURVATURE

NLIN=NLEL-1 |
CRELSULy 1) =-lau®PIE(1,2) =30 #PHI(Ly1)=PHI(1y3))/(2.%0ELSL)

DFEBSIl;NDEL)=lG.*PHI[lnNL[M)—S.*PHIII.NDEL}*PHII1,NUEL-2))/lZ.*

STEADY=STATE INCLINATICN AT 50 0 NS ) Fl0.2

CARBLL
CaBL1
CabLl
CapLl
CABLL
CABLL
CREL1
CagL]
CakLl
CAaBL1
casL1l
CABL1
CABL1
CaBrl
CABRLL
CAabLl
CABL]
CaBL1
CaBL]
CABL1
CABRLL
CLBLY
CatLl
CABLL
CABL1L
CAaBL1
ChELY
Cabll
CabLl
CaBLl
CaBL1L
CRBLI
CabLl
CaBLl
CABLL
CaBLl
CABL1
Cabkll
CABL]
CaeLl
CapiLl
CABLI1
CabLl
CaBLl
CabLl

CaBL]

CanLl
CAEL1
cAaBL ]
CaBL1
CaublL1
CAHBL]
CABL]
C4RL1

4h
46
47
&b
45
51
51
52
537
Y4
55
56
57
5u
59
60
6l
&2
63
(eL
&5
L6

&7 .

G
6%
70
i
T2
13
4
75
e
17
T8
79
80
81
82
83
a4
as
86
87
88
B8G

90

92
33
G4
95
Q6
97
9k
QG

CABLI1OQC
CAeLl1l0l
CaBLEIO?
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110
120

130

140
200

350
4C0

510

515
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NT=NX

[F INT-NY) 110,120,120
NT=NY

CCONTINUE

REAL (24+1410) AXCLY sAXTZ) s AXI3) s AXTG) g AXIH 2 AX(E) 4 AX(T),AX(8)
READ (2+1410) AY(1)4AY(2)4AY{3)3AY[4) 3 AYIS5)sAY (6} sAYIT) AY(8)

CC 130 K=L4NT
AN{RI=AX(K)*CUS{PHI{1, 1) I+AY{K)*SIN(PRIt1,1))
ANPAK)==AY (K} *COS{PHICLs L)} +AXIRI*SIN(PHI(1,41))
CALCGLATION CF CABLE COEFFICIENTS AND CUNSTANTS
VA=(CMOD/CRHD) %% .5

CMN={CRHU+WRHG) %A

CALCULATION DF MAXIMUM TENSION ANG TIME INCREMENT

TM=0.

LT 140 NS=1,NDOEL
T{Z2aNS)=TL1,NS)
TVAX=T{2.1)

KTRCL=0

CC 400 NS=1.NDEL

IF (TMAX-T({2.NS)) 350,400,400
TMAX=T[2+NS)

CONT INUE

RMAX= |, +TMAX/ (A%CNMCD)
VIM={( TMAX L (CMN®RMAX) ) ¥%,5
CELTM=.9%0ELSG/VTH
TM=TM+GELTM

WRITE(5,1460) TM

CALCULATION OF LONGITUDINAL MCIIUNS FOR A GIVEN TIME

CC %3¢ NS=1.NLEL

S1=0.

$7=0.

S3=0.

CC 510 K=LNT

CA=K
CSS=COS(CA%CM%SO(NS)/VA)
SSS=SIN{CA*CMESC(NSYI/VA)
CS5T=CUS{CA=OM*TM)
SST=SIN(CA%OM%TM)
CSL=CUS{CA*OM®CL/VA)
SSL=SIN{CA%OM®=CL/VA)
S1=S1+ANIK)I%CSS*¥SST/CSL
S2=52+AN(K)IFLAXSSSHSST/LSL
SAI=S3I+ANIK}*CA*CSS=CST/CSL
CONTINUE

S|V1=Cl

SKz2=0.

SM3=0.

CC 520 M=L.NM

MX=M+]

EM=M—1

Slf:(.]-

CC 519 K=1NT

CA=K
SA=54+LARCMEANIK Y/ (L (CARUMY X2 - ( [EM+ .5 ) %P IHVA/CL) %%2)
CONTINUE

CABLL1I0s
CABLLL1OT
CABL1IOE
CABL1LCS
CABLIlLC
CABLILLL
CHELLLI?
CABLI1L113

CaBLlIlle

CABLL111S
CARL1I11¢
CaFLL117
CABL11l1&
CARBLI1LS
CABL1120
CagLllzl
CaPLll122
CABLLL123
CABLL1124
CABLL12S
CalLll2e6
CAaBLLL127 .
CaBLI128
CABLILZ29
CablL1130
CAEBLL113)
CabL1132
CABL1133
CABL1134
CABL1135
CaBL1L3&
CABL1137
CABLLL3%
CABL1139
CABL1140
CABLL114l
CaBL1la?
CABLL1L143
CABL1144
CABL1145
CABL1 14w
CABL1l47
CABL1 148
CARL! L1449
CABL1 150
CABLLIL15]
CapLllse
CABLL1153
CAHRLLI 154
CaBLE1SS
CABLL11YG
CAELL157
CABLIl%w
CABLILS9
CarllleD
CaBLtlel
CabL1162
CABLLL1&Y
CABLLLl64
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530

700
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710

715

810

820
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SV1=SM1+SIN{{tM+.5}*PI*V&*TM/CLi*CUSI(Em+.51*PI*SUINS!/CLl*Sq
LAY E LTS
SM2=SM2+SIN{(tM+.5J*PI*VA*TM/CL)*bIN((&M+.5)*PI*SD(NS)/CL)*SG
1#{—1 ) EEMNH{2 EM+1.,)
SN3=SN3+CDS((EM+.5)*PI*VA*TN!CL)*COS{tEM+.Sl*PI*SD[NSl!CL)*S4
1% (=1, )%#MX% {2, %EM+]1,)

CONTINUE

Y{2eNS)=S5L42 0% VARSML/CL

VIZoNSYI=CMESI+P IRVARS 2R SM3 /0L %%,
VIZeNS)=VLZ G NSI4VT%COSIPHI(2Z,N5))
Rt2.NS)=1.—OM*52/VA-P1*VA*SM2/CL**2+Tll.NS)/lA*CMDDI
TUO3ANS)=A%CMODR(RIZ,NS)=1.)

CONTINUE

CALCLLATION OF MOTIONS CF UPPER END PUINT

LI2+«1)=VvI®SINI(PHI(1,11}))

CC 705 K=14NT

CAY=K

L{Z2y1)=U(Z4 L) +ANP{K)#SIN{CAYSOMRTHM)
FALF{L}=(T(2413/(RUL,L)=CHMN) J2%,5

FALF(3) =T 242)/(R{LyZ21%CHMN) ) %% .5
FALFUZ2)=ATU3 1)/ (RIZ2,1)%CMIN) ) 4%%.5
RATL=1.-(FALF{11/({DELSU/UtLTMJ+FALF(l}—FALF{B}))
IF (RATC) 710,715,715
TM=TM-DELTM%* {1l .,-.9/{1.-Rafy))
DELTM=DELTM#%.9/(1.~RATC)

GC TC 700
TP=I{2-1}+{l.—RATD)*(T(E'BJ-T(Z.I}l
RP=1.+TP/LA%CHMCD)

VP=VILle L 4 {1=RATOCI*{VI{Ly2)=vIiLl,L))
LP=U(1.1)*(1.—RATO}*(U(1,2}-U(1,13l
FALFP={TP/{RPHCMN} ) %%, 5
PFIP=PHI[2.ll+{1.—RATUl*(PHIIZ,J)—PHltz,L}J

Caslllas
CARLLLl®S
CaBL116g
CabBLLI16G
Cavllle7
CARLLIl67?
CABLLL&E
CaBlLlloy

CaBLll78
CABLLILTL
CaBL1l72
CABL1171
CABL1174
CABLLL7S
CaBL1176
CabLlY7Y
CABL1178®
CABLL11 79
CakrLllBO
CaRLlinl
CABLL11&2
CABLL11R3 -
CACL1i84
CabLl 185
CABL1186
CABL1ILSBT
CapLll8g’
CaBLllay
CaBL1190
CABLIL191
caBLll19?2
CARL1193
CABLL1194
CaBLL19Y

PHIt3il):PHIP+(2.*(U(2.L)-UP}+.5*UELTK*[UP#ABS(UPI+U(2fl)*ABS(U{ZrCABLlIQb
ll)))*nﬂHU*CR*CD/CMN—2.*G*COS(PH]P)*(CRHU*WRHU)/(CRHO+HRHU)*CELTM]/CABLI19?

CAVIZy LI+VP=RI241)I*FALF{2)=RPXFALFP)
CALCULATION OF MOTIONS AT NUN ENOG PUINTS

LC EC90 NS=2,NLIM
FALECLI=(T(2 NS}/ IREL S IECMNDY Y %%, 5
FALFLZ2)=(TL{3eNSI/IR{2+NSIXCMN) %%, 5

FALF(3)=0T(2 NS+1)}/{RIL,NS+L}*CMN) ) E%,5

FALF4) = (TL{2yNS~1)/(R{LsNS=LI%CMIUII%%.5
RATG=1.-(FALF{13/{(UELSD/DtLTMJ+FALFIl)—FALFIB!!l
IF (RATO) 810,820,520
TR=TH-DELTNM%(le~sG/(1le=-RAT0))
CELTM=LELTM*,9/(1.—RaTUL}

GC TC 7100
TPETI2eNSI+{ L =RATU)*(TIZ,NS+1)=T{2,N5))

RP=| . +TP/{A%¥CMCD)

FALEP=(TP/(RP%CMN) )%z ,y

UP=ULLyNSI+{La=RATCI*{ULLL NS+11-U(1,N5))
VPEVILaNSI+(1a=RATO)® (VL NS+1)=VI14N5))
PFIP=Ph1{7|N5)+I1.—RhTUl*lPHi(2.NS+l)—PHI!2|NS))
RATP=1a—(FALF{1}/ ({DELSC/UELTR)4FALT (1) ~FALF (4] )}
[F (RATP) 910,+920,92(¢
TM=Th—UELTMY{1la=eQ/(1la=RATP})

CABL119¢
CABL1199
CabLIZOO
CaBL1201
CABL1202
CaBL1203
CABL1ZO4
CABLL1205S
CABL1ZzO6
CABL1207
CaBLlz08

CABL12GY

CaBllzlp
CaBLL?ll
CaBLlIZ1Z
CARL1213
CAaBLl1214
CaBL1215
CaBLL1Z1s
CABL1217
CapLlZ1e
CrBLIZ19
CaBL1220
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1c70

1080
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CELTM=LELTM®.9/{]1.—-RATH}

GO TC 7CO

TR=T{ 2o NSYT+{Le—RATPIF[TLZ2¢NS=1)=-T{2+NS)}

RC=1.+FQ/ (A%CMLCD)

FALFU=(TU/{RURCMNDI x5

UL=UL Lo NSTHILo—RATPIF{UL Ly NS=1)=Ul1,nNS))
VE=V{LyNSI+ (L =RATP)F{ V{1 ,NS=1)=VI1,NS)})
PHIG=PHI(Z2.NS)I+{1.—RATPI*(PHI{ZsNS=L)-PHI(2sNS})

LEAR=.5% (UP+UQ}
PEI{34NS)={2+%(UQ-UP)I+{VI{Z24NSI+VP-R(2,NSI®FALF{2}—RP*FALFP)I%*PHIP

CagLlz?221
CaBRrLlzez22
capLlzz3i
CABLLZ24
CaBLL225
CAaBL1Z22b
CaBLLz27
CABLLIZZb
CACL1 229
CABLIZ3D

L= (V{24 NS +VQR+R (2, NSI*FALF (2 ) +RWFFALFU) *PHIQ-G* {COS(PHIPI-CLS(PHIQ)ICAELLY3]

2Y¥(CRPL=wRHDI *CELTM/ {CROO+WRHU ) +DELTM* (UP*ABS{UP ) —UQ*ABS (UW)
F+{UPHUBARI=ABS{UP+UBAR )~ {UW+UEAR I ZAES (UGHUBAR ) ) *CRE:CO*WRHO® .5/
4{3.*CMN])
PHI(3aNSI=PHII34NS)Z (VP -Viu—RPHFALFP~HO%FALFQU~2+*FALF(2)}%R{Z2,NS)}
Ul2eNS)=0.25% (2% (UPHUWI +( 2. %V {2y NSI+VP+VQ-RPHFALFP+RQ*FALF()
1#PHI{ 3, NSI={VIZ2yNS)+VP-R{24NS)%FALF{2)-RP*FALFP}%*PHIP~-
ZUVIZ NSY4HVOH+RIZ yNS)AFALF (21 +RUBFALFU)¥PHIQHGX{ 2. %2COSIPHI(3,NS) )+
3CCSUPHIPY+COS{PHIG) ) {CRHO~WRHUJ%*DELTM/ (CRHO+WRHED I -CELTME=(LP®ARS
GILPY+ULXARS UG + (UP+LBARK ) 2ABS (UP+UHAR) + (UQHUBAR I ®ALS(UQ+UEAR)
542 3UBARFARSIUBAR) J*CRECORWRHEGH .S/ (3, %0 MN) )

TEST=CeCl=-Ul(22NS)

IF {TEST) 1070,1070G.1090
CONT=s1.-20.%ABS{UBAR—U{2,NS)I/80BS{U02,0MN8))

IF (CONT) 1080,104%0,109C

URAR=.S%{UBARFU{2Z4NS))

GO TC 1QH0

CONTINUE

CALCULATION OF MOTIOUNS fUk LUwer oNC POINT

FALFOL)={T{2sNUGELY/Z(R{LaNDELY*CMNY YRR 5
FALF({Z2)=(TU3,NDEL)/(R{Z,NDEL)*CHN} )=, 5

FALF L4} ={TI2sNUEL-L)/{R{LyNOEL=L)*CMNY)%*.5
RATOU=1o=(FALFIL)/C(CELSO/UELTHY#FALF(L)=FALF{4)))

[F (RATG) 1100,1110,1110

TMsTM—DELTM%*(l.—.9/(1.—-RATU)}

LELTM=DELTM*.9/(]1.~RATU)

GO T 70C

TC=T{2+ NUELY+{1a—RATOI R {1 {2, NOEL=1)=T{2Z2+NDEL))

RGC=1.+TG/ LARCHMLD)

FALFO={TU/ZLRQ*CMN) ) %x,5
LU=ULLyNEEL}+ {1 —RATUI®{U{ L NDEL=L1)=U(1,HNDEL))

VE=V LW NLELI+ (1. —-RATOI*{V{L,NOEL=-L)=v({1,NDEL})
PRIG=PHI(2yNCEL)+(1+=RATO)*(PHI(2yNDEL=-1)=PHI{2,NDEL))
CP=,5%LR%*CO*WHHC

CLESI= (4. %UlLyNREL=1)}-3.%Ul 1y Nucb )=Ull NUEL-2))/(2.%LELSO)
PRI(3.NDEL)=PHI{Z2,WCEL)-BULSI*UELTM/RI(LyNDEL)

L2 NDEL)=UG+.5%{VIZ,NDELI+VOU+R (23 NDEL ) *FALF(Z )} +RQ*FALFU) %
F(PHI{S3WNCEL)=-PHIGI-CPHRUUHABS (UG #DELTM/CMN
24 536K {COSIPHIW) +CUSIPHI{ 3 NUEL) ) ) %0ELTHM* (CRHU-WRHE) / (CRHO+WRHD)
CLES2=(4%U(2 NUEL=1)=3¢%Ul2yNUEL)~U(2,8LEL-2)) /(2. %0CELSO}

CABLLZ32
CapL1IZ33
CABLL1234
CABL1235
CaBtl 236
CABL1237
CABL123k
CABL12Z2739
CLBLLz4O
CaBL1241L

CABL1242 .

CABLL1Z243
CapLl1?244
CLBL1245
CagLlZ4e
CABL1Z247
CafBiLlzat
CABL1249
CABL12%0Q
caBgLliz2sl
CABL1¢52
CABLIZS3
CapLizvs
CABLL1Z55
CaBL1256
CABL1257
CaBLlz2%58
CaBLl?%S
CABLL1Z2oC
CabLlzol
CABLLz&Z2
CaBL1263
cagLlzed
CABLLZES
CAEL1266
CaABLLILGT
CaBlLllées
CABLL1le9
CABL117TC
CABLL]1T]
CaBlLL1172

PRI{3 NDELY=PRI{Z4NDEL) = 5% (VULSE/RIL,yNDEL)+DUNS2/RK 124y WDELY ) %DELTMCABLLL 73

LAZWNCELI=UQH 0% (VIZyNDELI+VUHR (2 NDELISFALF(Z)4RG*FALFU ) %
1{PHRIC3NLELY-PHIQ)

2=, 5%CPUELTMX (UGHABS (UG +ULZ y NDEL Y ®ABSIU(Z2yNDEL)Y ) /ZCHN

34 5%GHF (COSIPHIWI+COSTPHTI (3, NUELY P )*DELTM*¥{CRHU-—WRHD) / {CRHU+WRHO )

CALCLLATION COF TRANSVERSE CUNTRIBUTIGN TG STRAIN

CaBL1174
CABL117S
CaBLL176
CABL1277
CABLLI27TY
CABL1Z2TH



1120

1130
1140

1150

aEak el

1200

1310

1330

1340

1350

1410
1415
1420
1450

IR AV
1470
1480
L5C0
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CaBL1279

CC 1120 NS=1,.NDEL CABLLIZHO
XU2oNSY=XLLaNSI+HLUIZ2yNS)=ULLyNS))ZDELTH CABLL128&]
CELRUnS)I=X[2,NSIXLCFELS{LyiNS) CaBLlz2Rr?
X{14NSY=X12,NS) Cabll2s3
OCC 1130 NS=1.NUEL CABL1Z244
ERR=ABS IDELR{NSJI/{R{24NS)=-1.)) CagLizds
IF (JCl-ERR)} 1140,114C,1130 CABL128¢
CONTINUE CABLLZ2BT
GC TC 12¢0 CnBL128E
CC 1150 AS=1.NDEL CABLLZARY
R{2NS)=RIZyNST+DELRI(NS) CABL1290
TE3NS)=A%CMODR{R{z2,NS)=1.1} CaBLl29l
GC TC 70¢C CABLL12G2
CabLlz93

CALCULATION OF CABLE COURUINATES KRELATIVE TO FIXED TOWING POINT CABLLI?94
CABLL2Z9S

XCil1=0. CABL129¢
YC(1)=C. CABL1297
CC 1310 NREF=14NT CABL1298
XCUL)=XCAL)-AXINREF)I®SIN(RNREF*OM%TM) /OM CaBL1299
YCIU1)=YC{L)-AY(NREF)*{1.-COSINREF*0OMXTM]} ) /0OM CABL1300
XCReF=XC (1} CABLL13OL
YCREF=YC{1) CaBLL3O?
CC 1330 NO=2.NUEL CABL1303
NI=NC-1 CABL1304
PHIAV=S(PHE(34NII+PHI(3,NO)Y}/ 2. CABL130S”
LLPHI=SABSUEPRE(IZNII-PHI(3,NOY) /2, CABL130¢
ARCL=DELSO*{R(ZsNCI+R(24NLII/ 2, CABL1307
TANF=SINIDLPHI} /FCCSILLPHI) Call3ow.
CHORUSARCL% (1o —TANF%%2) / (1.+TANF#%%2) CABLLI30DS
XCINCI=XCREF+CHCRC*CAOS{PHIAV) CapLl31lC
YCINGI=YCREF+CHCRO*SIN{PHIAV) CapLi3ll
XCREF=XCIND) CaBLLI31YZ
YCREF=YCI(N{)} CAabL1313
WRITE(541480) CaBL1316
CC 1340 ANO=1,NUEL CABL1315
WRITE (541470) SOINC) «XCUHOYy YCUINDY CABL1316
CapLL1317

CALCULATION OF OUTPUT CABLL1318
CaBL1319

CC 1350 NS=1,.NDEL CasLl32¢Q
WRITE (54L450) SUOINS)4yU{ZyNS)sPHIL3 I NSIaTI3,NS)4VI2:NS) CABL1321
T(20NS)=TL3'NS) CABL132?2
R{1eNS)=RL24NS) CaBL1323
YILaNS)=Y{2,NS) CaBlL1324
ViLleNS)=VLEZ,NSI CaBL1325
LILaNS)=sUL2,4NS) : CaBL132¢”
PHI(Z2«NS)I=PHI({3,+NS) CAEL1327
IF (TM=TF) 200,1500,1500 CABLL1328
FCRMAT (BF10.5) CABLL329
FCRMAT {2F10.54,315) CagLl33o
FCRMAT {(65FL10.2) CABL1331
FCRMAT t>H SO= iFBeaett L= .Fﬂoﬁ,bH PHI1= gFTaq'QH 1= |F8.2'4H V= |CABL1332
IFE.2) CABLY333
FCRMAT (10H TIME= 4FE.3) CAaBL 1334
FORMAT (7H  SU= +FlOL 2980 XC=  4F10.248H YC=  +F10.2) CABL1I43S
FORMAT (43H XC=DELTA SuUo ALPHA YL=DELTA SUB EETA ) CaBL133¢
STCP CaBL1337



TIME= 0.319
XC=DELTA SUBE ALPHA
SC= 1600.00
50= 950.00
SC= SU0.00
SG= 850.00
SC= BGC.CO
5C= 750.00
s5C= T00.00
SC= 650.00
SC= 600.00
SC= 550.00
SC= 500.00
SG= 450.00
SC= 400.00
SC= 350.00
SC= 300.00
SC= 230.00
SC= 200400
5C0= 120.00
SC= 100.C0O
sC= 50.G0
SC= .00

SC=  1000.00 ys=
SC= 950.00 u=
SC= 900.00 U=
SC= 850.00 U=
5C= 800.00 U=
SC= 750.00 U=
SC= 7C0.0C uy=
SC= 650.00 LU=
SC= 600.00 U=
S5C= 550.00 U=
5C= 5CC.00 u=
SC= 450.00 U=
SC= 400,00 U=
5C= 350.C0 U=
5€= 300.0¢ U=
SC= 250.00 y=
SC= 2C00.00 U=
5C= 150.00 U=
5C= 100.00 U=
SC= 50.00 U=
S5C= 0.00 U=

TIME= 0.573
XC=DELTA SUEB ALPHA
SC= 1600.,00
§C= 950.00
50= 200.00
SCG= 850.00
SC= 8GC.00
SC= 750.C0
SC= 700.00
SC= 650.00
5€C= 600.0N
SC= 550,00
SC= 500.00

AL T

SAMPLE OUTPUT -~ PROGRAM CABLI

v YC=DELTA suUB BETA

L= -0.62 YC=
xX(= 36.12 Y=
XC= 72430 YC=
XC= 108,48 YC=
XC= lag,.64% YL=
XC= 180.63 YC=
XC= 211.01 YC=
xC= 253.19 YC=
XC= 289, 3¢ YC=
XC= 325.54 YC=
rL= 36l.T2 Yi=
AC= 357,89 YC=
XC= 436,07 YC=
XC= 470425 YC=
XC= S506e4?d YC=
XC= 542.60 ¥C=
XC= 518.77 YO =
xC= s laas YC=
XC= &hl.12 YC=
XC= 68730 Y(=
XC= Tz3,40 YC+=
7.56 PHI= C.7268 T=
4.0 PHI= Q.7620 T=
4.80 pPRrI= (.7619 T=
4.80 PHI= Jel61l9 1=
4,B0 FHI= 0.7619 T=
4.8C PrlI= 0.7619 T=
4.680 PHlI= 0Q.,7619 T=
4,80 Phl= 0.7619 T=
4+8BC PHI= D.T6l1l9 T=
.80 PHI= 0.7619 T=
4 .80 PHI= G.T7619 T=
4.80 PHI= (.7419 T=
4.80 pHI= @.7619 T=
4.80 ¥hi= UeT6L9 T=
.80 PHI= 0.7619 T=
4.80 PHI= 0Q.7619 T=
4,80 PH1= (G.7619 T=
4,80 Ftil= ©,.T619 T=
4.80 PHI= 0.7619 T=
4,80 PHI= D.7061% T=
.35 PHI= 0.7662 T=
v YC=LELTA 5UB BETA
XC= -1.00 YC=
XC= 35,75 YC=
XC= T225 L=
XC= 106 .43 L=
XL= las,61 YC=,
XC= LU T8 Y{=
XC= 216.96 YC=
XC= 253.14 YC=
XC= 207231 YC=
XC= 325,49 YC=
XC= 36106 ¥YC=

0.05

33.91

68.43
102.95
137.47
172.00
206,52
241.04
275.57
310.09
344.61
379.13
413,66

448. 1€
4652470
517.22
551.74
58B6.26
6z0.78
655430
689.90
16567.02 v=
16534.,66 V=
16502.30 V=
16502430 V=
16469.95 V=
16437.59 V=
16437.59 V=
16437.59 V=
16405423 V=
16437.59 V=
16469.95 v=
leTze. g1 v=
9739.59 V=
99GE 45 V=
10030.81 v=
1603G.81 V=
1uG30.81 vs
9998 .45 v=
9998445 V=
9966.10 v=
9998.45 V=

0.1l6
33,96
68413

162.66
137.1b
171.70
c06.22
24074
275.27
309.79
344431

7.95
Te35
7.95
TeG5
7.95
7.95
T.95%
T.94
T.94
7.94
7.93
?'B"’
B.T7
8.73
8.72
B8.72
§.72
8.72
8.72
B.72
8.71



SC= 4«50.00
50= 400.00
5C= 350.00
S¢= 3CC. 00
SO= 250.00
SC= 200.00
§C= 120.00
SC= 106.00
SG= 50.00
5@8= ¢.00
5C= 1000.00 u=
5C= 950.00 U=
SC= 9C0.00 wu=
SC= B50.00 U=
3C= BC0.COQ U=
5= T20.C0 U=
SC= 100.00 U=
5C= 650.00C U=
5C= &£C0.00 U=
SC= 550,00 U=
SC= 500.00 U=
5C= 450,00 =
SC= 4C00.00 u=
sSC= 350.00 U=
SC= 300.C0 u=
SC= 250.00 U=
SC= 200.00 U=
SC= 150.00 =
SC= 100.00 u=
SC= 50.00 u=
SC= 0.00 U=
TIME= .30
XC=DELTA SUb ALPHA
SC= 10CG.00
SC= 950.00
S0= S00.00
SG= 850,00
S0= 800.00
sC= 150.00
SC= 700.00
SC= 65000
SC= 600,00
SC= 550.0U0
SC= 500.00
SC= 450.00
SC= 400.00
Su= 350.00
S0= 306.00
S0= 250.00
SC= 200.00
SC= 150.00
SQ= 100.00
SC= 30.00
SC= 0.G0
5C= 1000.00 U=
SC= 950.00 U=
§C= 90C.CC u=
SC= 850.00 us
SC= B0C.CC L=
sC= " 750.00 u=
700.00 U=

SC=

- LED

L= 397.84 YC=
XL= 434,01 YC=
XC= 470419 YL=
XC= 5C6.36 YC=
XC= 542.54 YC=
XC= BT8.72 YC=
XC= &14.69 YC=
XC= 651.07 YC=
A= 68BT.23 YC=
XC= 123.31 YC=
8.04 PHI= 0.7420 T=
Ba39 PHI= JeTh2E =
6.40 PHI= (Q.761l9 T=
640 PHI= 0.7619 T=
6.40 PHI= (0.7&19 T=
t.4C PHl1= 0,7619 ¥F=
b4 PRHI= VeT7619 T=
6440 PHI= (7619 T=
.40 PHI= (0,7619 T=
6.40 PHI= O.?élg =
€.40 PHI= 00,7619 T=
Ge40 PHI= (a7019 T=
.40 PHI= Q.7619 T=
&.40 PHI= (,.7619 T=
6.40 PHI= 0.7619 T=
6.4C PHI= 0.7¢61l9 T=
Se40 PHI= 0.T619 T=
.40 PHI= 0.7619 T=
6.40 PHI= 00,7619 T=
Leabs PHI= (U 7627 T=
6£.26 PHI= 00,7465 T=
+ YC=UELTA 5UB €cTA
XC= ~-1l.47 Yi=
XC= 39.54 YC=
XC= Tel3 YC=
X(L= 108,48 ¥YC=
xC= l44 .66 YC=
XC= 1bl.84 YC=
xXC= 217.01 ¥YC=
XC= £h3.19 YC=
XC= Zu'de 36 YC=
LC= 325.54 YC=
XC= J6ledl YC=
XC= 397.09 Yyl=
XC= 434400 YC=
XC= 4T0.24 Yl =
A(C= 5Ca.42 YC=
XC= 542,59 yi=
XC= 518.77 Yi=
XC= Gléa.94 YC=
XC= 691.11 Yi=
XC= LeET.25 YC=
xC= 123.33% YC=
8.4% PhH[= (.TZ248 T=
TeT2 PHI= QeT4bu T=
T.79 PHI= 0.7511 T=
6.83 FRI= 0.7619 T=
o83 PHI= CG.7619 T=
6.83 PHI= 0.7619 T=
6«83 PHI= OeaTHLlY T=

378.83
413.35
447.87
482.39
516.91
551.43
585.9%
620.4E
655.01
689.63
16437.59 v=
16405.23 V=
16405.23 V=
16372.87 V=
1£6340.52 v=
16114,01 v=
10127.BY8 v=
10192460 v=
10192.60 V=
10192.60 V=
1016024 V=
10127.88 V=
l10t27.848 V=
10095.53 V=
lU095,.53 vs=
10063.17 V=
10030.81 v=
10030.81 v=
999k .45 V=
9966.10 V=
9998.45 y=

0.32

33.91

6799
102.32
136.84
171.36
£05.88

240. 40
274.32
309.44
343.96
378.48
413.01
447,53
482.05
5lé.57
551.09
585.061
620414
654,69
689.32
4303.54 ¥=
4271.18 V=
39577.81 V=
10192.60 v=
10192.60 V=
13192.60 V=
10192.60 v=

8.10
T.86
T«88
T.886
7.86
T.89
Beld
E.673
B.63
.63
B.&3
.63
.63
.63
u'ba
g.673
B+.63
B.8613
&.63
B.63
8.60

T.88
T«E7
8.41
G.48
He49
8,49
et
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APPENDIX II

COMPUTER PROGRAM CABL2 FOR CABLES
WITH FIXED LOWER ENDS

This Fortran IV program, which is designated CABL?Z,
calculates the dynamic response of a cable having an arbitrary
steady-state shape and a lower-end whose position is fixed
relative to the steadyv-state towing point. The fixed lower-
end, which has zero acceleration, corresponds to a towed-body
whose mass is so large that its acceleration is negligible.
Except for the lower-end boundary conditions this program is
identical with Program CABL1. Again the cable is assumed
to be of uniform, circular cross-section and to move in a
fluid of uniform properties. The flow chart for this program

is identical with that of CABL1, and is given by Appendix III.

Program Inputs and Outputs

The required input variables and formats, the output
variables and the mnemonics are identical with those of
Program CABL1 and are described in detail by comment statements

in the program source listing.

Sample Problem

A printout of a sample run is given after the program
source listing. This printout is for a plastic cable which

is neutrally buoyant and has a steady-state inclination, ¢,
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which is everywhere zero. The assumed cable characteristics

and operating variables are:

CL = 1000 feet

CD = 0.2 feet

CRHO = 2 slugs/foot3

CMOD = 0.2 pounds/inch2

WRHO = 2 slugs/foot’

CR = 1.0

DELSO = 50 feet

VT = 10 feet/second

oM = 1 radian/second

TF = 10 seconds

NX = 1

NY = 1

NM = 40

AX(1) = 1, all other AX{(N)=0
AY(1) = =1, all other AY(N)=0
PHI(1,NS) = 0O

T(e,) = (20,000 + 0.6 ¢_) pounds

Calculated results are given for the first two time increments.
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PROGRAM CABL2

SOURCE LISTING

DIMENSION SO{110}sVI241101,T{3+110),R{2,110)¢Y{2,110),U(2,1120),PHICABL2

{34110} X124110)4XC{110),YC(110)
DIMENSION AN(B) +AX(8)AY(B) ANP{E) FALF(4),DFEDS(14110)4DELR{110)

PROGRAM CABLZ

CALCULATION DF CABLE MUTIONS FUR A CABLE WITH FIXED LOWER END
COMBINED LONGITUDINAL AND TRANSVERSE MOTIONS

LONGITUDINAL MOTIONS CALCULATED FTOM ANALYTICAL SOLUTION WITH
CORRECTION FOR THE EFFECT OF TRANSVERSE UISPLACEMENTS

TRANSVERSE MOTIONS CALCULATED USING THE METHOD OF CHARACTERISTICS

AND COMPLETELY COUPLED TRANSVERSE MOTIONS

REQUIRELD PROGRAM InPUT

THE TOTAL NUMBER OF INPUT CARDS REWUIRED IS 5 PLUS NEEL
WHERE NDEL IS THE NUMJSER OF SPATIAL INCREMENTS ALONG THE CABLE

CABLZE
CABL2E
CaBL2e

CaBL2¢%
CABL2E
CaBL2E
CaBLZ2&
CABLZ2E
casLe
CABL2Z
CasL2
CaBLZ2
CaBL2
CaBL2
CABL?2
CaBL2
casLe
CABL?Z
casL?2
CaBL?2

THE FIRST CARD CONTAINS THE FOLLOWING DATA AT THE FOLLOWING FORMATCABL?2

CL = CABLE LENGTH IN FEET Fl0.b
CD = CABLE DIAMETER IN FEET F1l0.5

CRHO = CABLE MASS DENSITY [N SLUGS PER LubIC FOOT FLO0.5
CMOD = CABLE MODULUS OF ELASTICITY IN PSI DIVIDED BY 1000000
F10.5

WRHO = WATER MASS DENSITY IN SLUGS PER CUBIC FOOT Fl10.5
CR = NORMAL DRAG COEFFICIENT FOR STEADY FLOW Fl0.5
DELSC = INCREMENT Ity CABLE LENGTH IN FEET F1l0.5

VT = TOWING VvELOCITY In #EET PER SECOND FlO0eb

THE SECOND CARD CONTAINS THE FOLLOWING DATA

OM = FUNDEMENTAL FREQUENCY OF EXCITATION IN RADIANS PER SECOND

F10.5

TF = REAL TIME AT WHICH CALCULATIONS ARE TERMINATED IN SECONDS
F10.5

NX = NUMBER OF TERMS IN FOURIER SERIES FOR DELTA{ X ) 15

NY = NUMBER OF TERMS IN FUOURIER SERIES FOR DELTA ( Y } 15

NM = NUMBER OF TERMS USED TO APPROX{MATE THE SERIES [N THE

LONGITUDINAL SOLUTIONS 15

CABL2
CABLZ2
CABL2
CABL2Z2
CABL2

CABLZ2
CABLZ
CcasL?
CABL2
CABLZ
CABL?Z
CABL2
capL2

CABLZ2

CABL2Z
CARLZ
CABL2
CaBL2
CaBLZ2

THE THIRU THROUGH THIRD PLUS NDEL CARDS CONTAIN THE FOLLOWING DATACABL?

SO { NS } = LONGITUDINAL POSITION { NS=1 FOR SOsLy NS=NDEL+1 FOR

CaBL?2
CaBL2

36

37
38
39
40
41
42
43
44
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S0=0 ) F10.2 CABLZ 45
T { 14NS ) = STEADY-STATE TEWSIUON AT SO ( NS )} F10.2 CABLZ2 460
PHI ( L+NS ) = STEADY-STATE INCLINATION AT SO ( NS ) F10.2 CABLZ2 47
CABL?Z 48

THE FOURTH PLUS NDEL CARD CONTAINS THE FOLLOWING DATA CABL2 49
CABLZ 50

AX L 1 JeeesesdBX [ B ) WHERE AX ( N ) IS THE COeFFICIENT OF THE N'CABLZ 51
TH TERM [N THE FOURIER SERIES #UR DELTA SuB X CABLZ2 52
CABLZ »3

THE FIFTH PLUS NDEL CARO CONTAINS THE FULLOWING GATA CABLZ2 54
CABLZ 5%

AY{l)s seecerAYI(B} WHERE AY(N} IS5 THE COEFFICIENT OF THE N'TH CABLZ 56
TERM IN THE FOURIER SERIES FOR UWELTA SUd ¥ CABLZ2 57
CaLz 58

CARLZ2 59

PROGRAM QUTPUT CABLZ2 60

CABLZ2 61

CABLZ b2

THE FOLLOWING QUTPUT 1S PRUVIDEU FOR EACH TIME INCREMENT Catl?2 63
‘ CABL2 64

TIME = « THE REAL TIME FOR WHICH THE CALCULATED RESULTS APPLY CABLZ 65
CABL2Z2 66

SO = « XL = + ¥YC = . ' caBL2 &7
WHERE SU IS THE LONGITUDINAL PUSITIGN ( SO=L IS THE TOWING PUOINTICABLZ 68
XC IS THE COORUINATE DELTA SUB ALPHA FOR SO CARL2 69

¥C IS THE CODRDINATE DELTA SUB BETA FOR SO CABLZ2 70

CABLZ 71

Sty = s U = vy PHI = '} T = e VW = . CAB‘LZ 712
WHERE S0 IS THE LONGITULINAL POUSITION CapLz 73
U IS THE TRANSVERSE VELOCITY AT SO CABLZ T4

PHEF IS THE CABLE INCLINATION AT 50 ' CaBL2 75

T IS THE CABLE TOTAL TENSIOW AT SO CAEBLZ 7o

V IS THE LONGITUDINAL vVieLUCITY AT SO CagrLe 77

CagL2 78

CABLZ 79

READ {24+1410) CLyCDsCRHO:CMOD+WRHO ¢ CRyDELSOLVT CABLZ 80
CMOD=CMDOD*1440000C0. CaBL2 81
DELTA=1.+CL/DELSD CABLZ2 82
NDEL=DELTA CABLZ B3
READ (241415} OMyTFR¢NXyNY 4NN - CABLZ2 84
PI=3.141l0b CABLZ 85
G=32.72 CABLZ Bé6
A=P*CD¥%*2 /4. CABL2 87
B0 20 NS=1,NDEL . CABLZ 88
REAL (2+1420) SOINSIsTLL1yNS)WPHIL1,NS) CABLZ2 8%
UELaNSY=VTRSINIPHI{L1+NS)} CaBLZ2 90
PHI(Z+NSY=PHI[1+NS) CARLZ 92
RULeNSI=TLL«NSY/LARCMODYI+]1 CaBLZ 93
VI1 NSY=VT%COS{PHI{1,N5)) CaBL2 94
X{1+NMS}=0. CABLZ 95
TL2sNS)I=1114NS} ' CaBLZ 9¢
CABLZ 97

CALCULATION OF CABLE STEADY STATE CURVATURE CABL2 98
CABLZ 99

NLIM=NDEL-] CABLZ2100
DFEDS Ly 1=~ {4.%¥PHI[142)=3.%PHI(1s1)=PHI{L1,3))/712.%DELSD) CABLZ101
DFECSIT1+NOELY= {4 *PHI{L,NLEM)=3.%PHI (1 NUDEL}-PHI{]1NGEL=-2})/7(2.% CABL2102
1DELSG) CABLZ2103

D0 100 NS=2.NLIM CABL2104
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10C

110
12¢

130

140
2C0

150
4C0

510

51%
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DFEDS{L+NSY=(PHItLeNS=1)=PHI(Y1,4,nS+1))/(2.%0DELSD)
NT=NX

IF (NT=NY])
NT=NY

CCNT INUE
READ (2+1410) AX(L1)}sAX(Z2) +AXA3) 9 AX(4)AXID) 3 AX(6)+AX{IT)AX(8B)
READ (2+1410) AY(L)4AYUZ2)sAY(3)2AY[4)AYIS)sAY(6)+AY( T} AY(8B)
CO 130 K=14NT

ANTK)=AX{KIXCOUSIPHI(L 1Y) +AYIKIRSIN(PHI(1,41))
ANPIK)==AY{RI®COS(PHItL 1) Y +AX(KI*SIN(PHI(1,1))

CALCULATION OF CABLE CGEFFICIENTS AND COUNSTANTS
VA=(CMOD/CRHD)*%,.5

CUN={CRHO+WRHO) *A

11041204120

CALCULATION 0OF MAXIMULM TeNSION AND TIMe INCREMENT
TV=0.

EC 140 NS=1.NDEL
TL2.K5)=TI1sNS)
TMAX=T(2,1)
KTRLL=0

CC 400 NS=1,NUEL
IF {(TrAX=T{2«NS))
TMAX=T(2.,NS)
CONTINUE
RMAX=1.+TMAX/ {ARCMCL)
YIM=(TMAX/Z{CMN®RMAX) ) %%, 0
CELTM=,9%NELSQ/VTM
TM=TM+DELTM

WRITE(S,L1460) TM

3504400400

CALCULATION OF LCNGITUDINAL MOTICNS FGR A GIVEN TIME

CC 530 NS=1.NDEL
S1=C.
§2=0C.
$3=0.
CC 51¢
CA=K
CSS=CLS(CA*OM:SCINS) /VA)
SSS=SIN(CA®CMRSO(NS)/VA)
CHT=CLS(CAROMAETM)
SST=SIN{CA%DOM*TM}

CSL=CLS (CA*QM*CL/VA)
SSL=SIN{CA%OMxCL/VA)
SLI=S1+AN{K}%SS5%S5T/SSL
$2=52+ANIKI®CSS*S5T*CA/SSL
$3=S3+AN(K)®S55%CS5T*#CA/SHL
CONTINUE

SM1=0.

SM2=0.

S#3=0.

CO %20 M=Ll,NM

MX=M+]
EM=H
S‘G=U¢
£C 515
CA=n
SH4=S4+CAROMRAN (K} / L{CA*CM) %% 2—(EM*PI*VA/CLI*%2)

K=1NT

K=1 NT

LONTINUE

Cagl 2105
CABLZ1CH
CRBL2107
CABLZ10P
CABLZ2109
CAbl2110C
CABLZI11
CARBLZ2112
ABLZ21113
CABLZ2114
CatL2115%
cagtzlile
CABL2117
CABLZ2I11LS
CABLZ2119
CabsL 2120
CaBLZ2I?1
CABLZ127
CABLZ2123
CaBLZ21?24
CapLZ1l2®
CABLZ212&
CaBrL2127
CAaBLZ]12R
CABLZ2129
CABL2130
CABL2131
CABL213?2
CaBL2133
CABLZL34
CABLZ13b
CaBL2136
CaRL2L37
CaBL213r
CaBlLe2l3sg
CABLZ2140
CABL2 14l
CABLZ142
CABLZ214&3
CABLZ144
CatL2l4ab
CaBL2 146
CABLZ214?7
CABL2L 4k
CABLZ2 149
CAapL21%0
CABLZ21%]
CABL21L1S2
CABLZ153
CABL2154
CABLZ215%5
CaBLZ2196
CaBL2157
CABLZ21H8
CABL21%9
CaBL2160
CABLZ1&]
CABLZ21&62
CAPLZ2163
CAELZ 104
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715

B10
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SVM1=SMI+STINIEMFPTI*VARTM/CLYESTINIEMEPIRSOINSI/CLI%S4%{~],)%kMX

SM2=SM2+SIN{EM#HPIHVAXTM/CL)*COS (EMBPI*SGINS ) /CL)RSHREMR (=], ) exMX-

SM3=SM3+COS{EMPIRVARTE/CL)*SINIEMEP [XSO(NS)/CLI®S4*eMR(~], ) %kMX
CONTINUE

Y{2sNS)=S1+2.%VvA%SM]1/CL

VE2 o NS)=CMBS3 42 (kP IXVARXZXSMT/CL%%2
VIZ2oNS)I=VI2yNSI+VTHLOS{PHI{2 4NS) )
RE2eNSY=1a40MES2/VA+2 %P [2VARSMZ/CL*%2+T (1 4RSI/ {ARXCMUD)

TE3 NS =ARCMODR(R{Z4NS)-1.)

CONTINUE

CALCULATION OF MUTICGNS LCF UPPER CND POIRT

L2+ 1)=VT%SIN(PHI(1411})
0C 70% K=14NT

CAY=K

U{241)=U{24 L) +ANPIK)&STIN{CAYSUMRTM)
FALFOL)=(T(2+s1)/(R{Ls1)I%CMN}I%E,S
FALFE3)=(T(2¢2)/(R{Le2)%CMN)I%%,5
FALFUZ2)=(T{34 1)/ {K{24LI%CMN) IR, 9
RATO=1.—(FALF(L)/(ILELSG/0ELTE)+FALF(L1Y=FALF{4)))
[F {RATC) 710,715,715
TM=TM—DELTM%(l.=a9/(Le~RATU})
CELTVM=DELTM®.9/{1.-RATQ)

GO TC 700

TP=TIZs L4 1e=RATUIR{T(2,2)=T(2,1))
RP=1.+TP/{AXCMOU) '
VP=VILlel)+{La=RAT)HIVILlyz)=VIL,1))

UP=U{Ll, L) 4{1=RATUI={ULLy2}=UlLly1))
FALFP={TP/{RPXCMN) } %%,5
PHIP=PHI(2,1)+{1e—RATCI®(PHI(2,2)=PHL{2,1))

CABL2165
ChEL2166
CABL2167
CABL2166
CABL21.69
CABLZ2 170
CaBL2171
CABL2172
CABL2173
CABL2174
CABLZ17S
CAEL2176
CABLZ2177
CABL2178
CakL2179
CABL2180
CaBL2181
CABL2L182
CARL2183
CABL21R4G
CABL21RS
CuBLZLIRE
CARL2187
CABL21E8
CABL2189
CABL2190C
CaBLZ191
CABLZ192
CABL2193
CABL2194
CABL2195

PHIC3.1)=PHIP+{2.% (U241 )~UP)+.9%DELTMR (UP*ARS{UPI+UI(2,1)%aBS(U(2,CuBL2196

CALCULATION OF MOTIONS AT NON ENUG PGINTS

CC 1090 NS=2.NLIM
FALFOL)={TIZ2eNSI/{RILyNSIHCMN) )%, 5
FALFIZ)=(TI3+NSI/IRIZ,NSI*CMND FHE,H
FALFC3)=(T{2NS+L}/{RIL+NOS+LIRUMNDY ) %%y
FALFLG)=(T(2 NS/ (RIEyRS=1)HCMN) ) %%, 5
RATC=1a—{FALF 1)/ ({LELSC/LELTM)I+FALF{Y1}~-FALF{3)))
IF {(RATC) Bl0+8204820 '
TM=TM=LELTME{]l.~.9/{1l.—rail))
CELTM=UELTM* a9/ (1le-RATL)

GC T 700
TP=TlZ2aNSI+ {1 e-RATO)#(T(24NS+1}-T(2,NS5))
RP=1.+TP/(A®CMCD)

FALEP=([TR/Z{RPRCMN) %%, H
UP=ULLeNSYH{Lla—RATUIRELELyNS+1) =015 ))

VPV Lo NS+ { L a~RATUI® (VLo WNS+1 )=V I11S))
PEIP=PHILI2 NS 4+ {Llo—RATUIS{PHL(Z2NS+1)-PRI(ZyNS)}
RATP=1,.~(FALF(L)/({CELSG/DELTMI+FALF(L)-FALFt&)))
[F (RATP) 910,920,920
TM=TM—LELTM*(Lle—aY/(la=rATP))
CELTM=DELTM&.9/{L.—-rATP)

GC IC 10g

TC=TIZ2sNS Y+ La—RATPI®{TU2y,NS—-1)-T(Z,NS))

111 ) 1 %wRHC*CR*¥COD/CMN=-2 . %5 CAS (PHIRP) % (CRHD—WRHO) / {CRHO+WRHOI*DELTMIZCARLZ2LIT
IV I2¢1)+VvP=R{2Z,1)FFALF(2)-RP¥FALLFP)

CARL219E
CABL2199
CABLZ220C0
CaBl 2201
CARBL2202
CABLZ2Z203
CabL2204
CABL2205
CaBL220¢&
CABLZ2207
CABLZ220b
CABLZ2209
CaliL2210
CablL2211
CABLZ2Z12
CaBLZ2?213
CABLZ2214
CaBL2215
CabBLz2z1F
CapLzel?
CABLZ71¢E
CABL2219
CaBL2220
CabLZ2e21
CaBlL2222
CABL22¢3



.

[

1€50

1670
1C80

1050

1100

1110
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RE=1.+TGL/{AXCMOR)

FALFU={TU/ {ROXCMN) Y %% _5

UG=U[1.NSJ+(1.—RATP)*IUIL.NS—I]-U{l'NS)J
VG=V!l'N31+l1.-RhTP)*(V{1vNS-l)-V(lyNSJ}
PHID=PHI{2¢NS}+11.-RAIPJ*(PH1I2;NS-1)-PHI(2'NS))

UBAR=.5%(UP+UQ)
PHIt3.NSJ={2.*(UO—UP)+{V(2,NSI+VP-R{Z.NS)*FALF(Z)-RP*FALFP)*PH!P
I-IV{2.NS}+V0tﬂlZ.NSB*FALF121+Ru*FALFQJ*PHIQ-G
2}*(CRHU-HRHGI*DELTM/lCHHU+wHHD)+DELTH*ICP#ABSIUP)-U&*A&S(
3+IUP+UBAH1*ABStUP+UbAR)-(UU+UBAR)*ABS!Uu+U8AR})*CR*CD*MHH
413,%CMNY)
PHIt3.NSlﬁPHIIBoNSl/(VP—VQ—RP*FALFP—RQ*FALFQ-Z.*FALFI2)*R(2'NSI!
U(Z.NSi=0.25*(2.*IUP+UQ}+(2.*VIZ'NS)+VP+VQ—RP*FALFP+RQ*FALFO}
l*PHItE.NSI-KVI2,NSI+VP-Rld;NS}*FALFKZJ-RP*FALFP]*PHIP—
ZIV(ZvNS)+VQ+RIZ;NSJ*FALFI2)+KQ*FALFQ)*PHIU+G*{2-*CUS(PH[(3'NS))+
3CCS{PHIPJ+CDS{PHIQ}}*{CRHG—WRHDJ*DELTM/(C&HD+WRHO)—DELTM*IUP*ABS
4tUP}+UC*ARSIUQ)+lUP+UbARJ*ABS(UP+U5AR}+(UQ+UBAR}*ABS(UQ+UBARI
5+2.*UEAR*ABS(UBARJ}*CR*CL*HRHO*.S/{A.*CMN}l

TEST=0.01=-Ul12,NS]

IF (TEST) 1070,1070,1090
CCNT=1.-20.*ABS(UBAR-U(2.N5})/ABS(U{Z'NSJ)

IF (CUNT) 10804+1090,1090

LEAR=.5%[URBAR+U{Z24NS) )

GO TO 1050

CONTINUE

Uw )
A% e 5/

CALCULATION OF MOTIONS FUR LOWEK ENE POINT

FALFOL)=(T(2,NDEL}/{R{LyNUEL)®CMN] ) %%, 5
FALF(Z)le(3.NDELJ/(Rlz,NUELJ*CMN)J**.ﬁ
FALF(4)={T{2.NUEL—1J/(Rll.NDEL—lJ*CMN)}**.5
RATO=1.-|FALF(1)/({UELSD/DELTM)+FALF(1)—FALF(Q)}}

IF {RAIC) 11004111041110

TM=TM~DELTM* (1.~49/(1.-RATQ) ) _
CELIM=0UELTM®*a9/{1e—RATL) +

GC TC 700

TO=T(2.NUELI*(1.—RATU}*ITI2.ND&L-1)—T{2;NUEEi)

RE=1.+TQ/(AXCMQLC)

FALFG=(TU/A{RQ*CMN) J 2%, 5
U0=UI1.NUEL)+(1-—RATO)*(U(1.NDtL—1}—Utl.NDELl)
vc=vtL.NUEL)+{1.—RATG|¢IV(1,NUtL—L}—Vl1,NDELII
PHIU=PHIt2.NDELJ+{1.—RATU)*(PH[(2.NUtL—L)~PH[t2.NDELJ1
CP=,5%CR*CD*WRHO

U2y NLEL)=VTXSIN(PHIQ}
PHIlB.NDEL)=PHIO+(Ul2,NDEL)-UO-(G*(CRHG-hRHU)*CDS(PHLQ)*DELTM/
1ICRHC+hRHD)l+.25*CR*CD*HRHU*IUU*AHS(UQ)+U(2fNDEL)*ABSIUIZfNDELI)/
ZCPN)*EELTMJII.5*{vg+V(2-NUEL]+Hu*FALFQ+K(2,NUELl*FALF{2)3]

U2+ NCEL}=VT®SINIPHI{3,NDEL))
PRI{3«NCEL)sPHIQ+(U(24NDEL ) ~UQ~
ICOSUPHIU34NDELI Y I/ {CRHO+WRHO] +«
?*AB&(U(Z.NDELI1I*DELTM/CMNI/{.5*(VO+V(2.NDEL1+R&*FALFQ+Rt2,NDELJ*
AFALF(2)Y 1))

LIZ2+NLCEL)=VT#SIN(PHI{3,iNUEL))

« 2%¥G* (CREO-WRHO ) *DELTM*(CUS(PHIQ) +

CALCULATION OF TRANSVERSE CONTRIBUTIGN TO STRAIN

CC 1120 NS=1.NDEL
XL2aNST=XLLaNS)+{UL2 NSI~U(14NS)J#DELTM
DELRINSI=X {2 NSIXCEEDS (1 4NS}

CuBL2224
CABL2225
CABLZ222¢
CABL2227
CABL2228
CABL2229
CABL2230

*{COS{PHIP)-CUS(PHIQICABL2231

CaBL2232
CABL2233
CABLZ234
CABLZ2235
CaABL223¢
CABL2237
CABL2238
CaklL 2239
CABLZ2240
CABL2241
CABL2242
CABL2243
CakL2244
CABL2245
CABL2246
CABL2247
CABL2246&
CAEL2249
CABL2250

CABL2251
CABL225?2
CABL2253
CABL2254
CABL2255
CABL2256
CABL2257
CABLZ258
CuBL2259
CABL2260
CABL2261
CABL2262
CABL2263
CabL2264
CABL2265
CABL2266
CaBL2Z267
CABL2268
CABL2269
CABL2270
CABL2271
CABL2272

ZB*CR*CD*hRHD#(UQ*ABS(UQ)+U(2vNDELICABL2273

CABL2274
CABL2275
CABL227e
CABL2277
CABL2276
CaBL2279
CABL228G
CABL2Z8]
CABL2282
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1120 X({1eNS)=XL24NS) CABL2263
CC 1130 NS=1.NDEL CABL2284
ERR=ABS (NELR{NS)/{R{ZsNS}=14)) CABL228R5
IF teOLl—-ERR) 1140,1140,1130 CABL2Z86

1130 CCNTINUE CaBlL2287
GC TC 1200 CABL2288

1140 CC 1150 NS=1,NDEL CABL2289
RI2+NSI=HLZ2yNSI+DELR(NS) CARL 2290

1150 T{3+NSISARCMOD*(REZ24NS)I~-14) CABLZ229]
GC TC 700 CabLz292

C CABL2293
C CALCULATION OF CABLE COQRDINATES RELATIVE TO FIXED TOWING POINT CABLZ294
C CABL229%

1200 XCt1)=0Q. CABLZ296
YC{1)=0. CakL2297
CC 1310 NREF=1,NT CARL229E
XCU1)=XCeL)=AXINREFI*SIN{NREFRXOMETM)/0OM CABLZ2299

1310 YC{L)=YCUL)-AY(NREF)I®(1.~CUSINREF#OMETM) ) /OM CABL2300
XCREF=XC(L) CABLZ2301
YCREF=Y( (L) CaBL2302
B0 1330 NO=2.NDEL . CABLZ303
NI=NC-} CABLZ230¢
PHIEAV=({PHE(3WNII+PHI(3,N0)}} /2, CABLZ30S
CLPHI=ABS(PHI(34NIY=PHI{3,N0))/2. CABL2306
ARCL=CELSO%(R(2,NQI+R(2,NI)) /2, CaBL2307
TANF=SININDLPHI) /COS{DLPHI) CABL230#
CHORUD=ARCL®(1.,~TANF*%2)/(1,+TANF*%2) CABL2309
XCINO)=XCREF+CHCRD*CUS(PHIAV) CABLZ2310
YCINO)=YCREF+CHORD*SIN(PHIAV) CaBLZ2311
XCREF=XC{NOD) ChbLZ312

1330 YCREF=YC{NO} " CABL231L3
WRITE(S.1480) - - CABLZ314
CC 1340 NO=1.NDEL CARL231%

1340 WRITE (5+1470) SO(NC) « XCtn0) y YC{NG) CAEL2316&

C CanlL2317
C CALCULATION OF CuTPUT CABLZ2318
c CABL2319
CC 1350 NS=1.NDEL CaBL2320
WRITE {5,1450) SOINS)YyUlZyNS)IePHI{II NS TI34NS)  VI2,NS) CABL2321
T(2,NS)=F(L3,NS) CABL23?22
RI1eNSI=RL24NS) CABL2323
YI1eNSI=YL24NS) CABL2324
Vi1 NS)=VL24NS) CABL2325
U{1+NSI=U{2,NS) CABL2326

1350 PHI(2NS)=PHI{3,NS) CaBL2327
IF {(T¥=TFY 200,1500,1%00 CABL2328

1410 FCRMAT (5F10.5) CABL2324q

1415 FORMAT (ZF10.5,31%) CAEL2330

1420 FCRMAT (BF10.2) CABLZ2331

1450 FCRMAT (5H SO0=2 JFB.2.4H Uz JF8.246H PHI= yFT.444H T= ,F8.244H V= ,Capsl2332

LFe.2) CABL2333

1460 FORMAT (10H TIME=  FH.3) CABL2334

1470 FORMAT (TH  SU=  +F1Ga2¢8H AC= 4y FLlO0.z,8H YC=  JF10.2) CaBL233%

1480 FCRMAT {43H XC=DELTA SuUb ALPHA , YC=DelLTA SuB BETA ) CABL23136

15C0 STOP CabL2337
END CABL233&

VARJABLE ALLCCATIONS
SC{R }=CODA-0000 VIR )=0292-U0DC TiR 1=20526-0294 R{R )=06LE-0523
PHI(R )=0CEz-0AS0 X{R )=0EYA-UCE®S XCiR V=0FT6-0GEYC YC(R }=10%2-0F78
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TIME= 0.112

XC=DELTA SLB ALPHA s YC=LELTA SUL tcTA

St= 1000.00 XC= Q.22 YC= 0.00

SC= 9L0.u0 x{= 5L.93 YO = -0.00

5C= 9C0.00 xX(= iGea 10 YC= =-0.00

€= 550.00 XC= 153.¢¢6 YC= -0.00

SC= BOU.CO XC= £Ub et ? YC= =0.00

&C= 750.00 xXC= £55.57 o= -0.00

SC= T00.00 xC= 306.73 YC= ~0.00

SC= 650.L0 XC= 357,59 ¥(C= -0.00

SC= £C0.00 XC= 409.04 YC= =0.0¢C

SC= 55000 XC= 46U«18 ¥YC= =000

SC= 500.00 XC= 511.30 YO= -0.00

SC= 450,00 XC= 562.42 YC= -0.G60

5C= 4C0.00 xC= £El3.54 ¥C= ~0«0U

SC= 15¢.00 XC= LL4 .60 YC= -0.00

S@= 30000 XC= Tloe17 ¥C= -0.00

SC= 250,00 Xt= Tobe88 Yi= -0.00

SC= 2G0.G0 X(= 818.00 ¥Y{= -0.00

SC= 150.00 XC= Bu9.11 yC= -0.00

5C= 100.00 XC= 920.¢42 Yi= -0.00

SC= 20.00 XC= 9Tle32 L= -0.00

s$C= .00 X{= 1022.43 Yi= =-0.00C
SC= 10C0.C0 U= Goll Prl= —0.0002 T= 21077.69 V= 11.96
SC= $50.C0 U= C.00 PRI= (.00GU T= 210456.32 V= 11.99
SC= 900.00 U= .00 PHI= 0Q.Q0006 T= 21019.19 V= 11.99
sC= 850.C0 U= 0.00 PHl= Q0.0000 TI= 20990.07 V= 12.00
SC= 800.00 U= 0.00 PHI= 0.0000 T= 2096l.1l6 v= 12.01
S5C= 750.00 L= C.0C PHI= 0Q.0000 T= 20932,91 v= 12.G¢2
SC= 7C0.00 U= 0.00 FPHI= 0.0000 T= 20905%.73 V= 12,03
5C= 650.00 U= .00 PHI= G,0000 T= 20B8l.78 V= 12.00
SC= £00.6C U= 0.00 PHI= 0.0000 T= 20878.33 v= 12.17
s= 550.00 U= G.00 PHI= 0.0000 T= 20287.70 V= 9.82
5C= 5C0.00 U= C.00 PHI= 0,0L000 T= 20283.862 V= 9.93
SC= 450.C0 U= 0.00 PHI= G.0C0CL T= 20259.87 v= 9.96
5C= 400.00 U= 0.00 PHi= 0.000G T= 20232.46 V= 9.97
SC= 350.00 U= 0.0C0 PHI= 0.0000 T= 20203.57 v¥= .97
sC= 300.C0 U= 0.00 PHI= (0.0000 T= 20174.45 V= 9.98
SC= 250.00 U= 0.00 PHI= 0.0000 I= 2014%.11 v= F.9¢4
5C= 200.00 u= V.00 PHI= ©0.0000 T= 20G1l1%.586 V= 3.99
3C= 150.00 U= C.00 PHI= 0.G000 T= Z20086.00 V= 9.99
5C= 100.06 U= 000 PHI= (Q«0000 T= 20055480 v= 9.93
SC= 50.C0 U= .00 PHI= 0.0000 T= 20026.,03 V= 3.99
SC= 0.00 U= U.0C PHI= G.00L0 T= 19936.05 V= 16.00

TIME= U.223

xC=DELTA Sue aLPHA » YC=UELTA SUb pETA

5C= 1000400 KL= —Ueb4h YC= 0.02

5€C= $50.00 XC= 5U.71 YC= 0.00

sC= S0C.00 xC= 101.88 YC= =0.00

5C= 550.00 XL= 153404 Yi= -0.00

o= 8CC.00 AC= 204,19 ¥YC= ~0.00

$C= 750.00 XC= 200435 tL= ~0.00

SC= 700.00 XC= 306.51 yi= -0.0C

SC= 650.00 AC= 327640 Yi= -0.00

SC= 6G0.00 X(C= 40v.el YoL= -0.00

SC= 550.00 xC= 45494496 Y(= -0.00

SC= S00.00 XC= bll.1ll YC= =0.00

sC= 450.00 XL= 26262l YC= ~-C.00

5C= 4G0. U0 XC= Gl3.40 Yi= -0 00

S5C= 3150.G0 XCs= bba,hh Yi= =-0.00



SC= 300.00
SC= 250.00
SC= 200,00
SG= 150.00
SC= 1¢0.00
S5C= 5000
SO= 0.00
SC= 1000.00 U=
SC= 95000 U=
SC= 9C0.C0 U=
SC= B50.00 U=
SC= 8C0.00 U=
SCs= 750.00 U=
SC= TC0.00 =
SC= 650.00 =
SC= 600.00 us=
SC= 550.0U =
S5C= 500.00 U=
5C= 450400 U=
SC= 400.C0 =
5Cs= 350.00 =
5C= 3C0.00 U=
5C= 250.00 U=
SC= 2C0.00 U=
SC= 150.00 =
SC= 100.C0 u=
5C= 50.C0 U=
SC= 0.00 U=
TIME= D+334
XC=DELTA SuB ALPHA
Sg= 1000.C0
SG= 950,00
SC= Q00.00
5C= 850.00
SC= 00«00
SC= 750.00
SC= 700,00
SC= £50.00
SC= 6£00.00
sc= 53040
SC= 500.00
S0= 450.00
SC= 400.00
s0= 3150.00
Sd= 3C0..00
SC= 250.00
5C= 200.00
50= 150.00
SC= 1C0.00
SC= S0.00
SC= U.00
sSC= 1000.00C LU=
5C= 950.CC U=
S5C= 300.0C U=
SC= B850.C0C U=
5C= 800.00 U=
5C= 750,00 U=
SC= TCO0.00 U=
SC= 650.00 U=
S5C= 6CC.C0 U=
SC= 550.00 U=

XC=
XC=
x{=
XC=
XL=
XC=
xC=
0.22
0O.1C
0.00
0.00
0.00
0.00
0.0C
0.0C
0.00
v.00
.00
U.00
0.00
0.00
0.00
0.00
0«00
0.00
0.00
0«00
0.00
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T15.49
7166.83
£17.97
BL910
Ge0.21
971.32
1022443
PHI= —-0.000%
PHI= =0.000¢
PHI= (.0000
PHI= 0.000C
PHI= 0.000C
PH]= 0.0000
PHI= 0.0G00
PHI= (.0000
PHI= 0.0000
PHI= G.0000
PHI= 0.00G0G
PHlI= G.0000
FHI= 0.0000
PHI= (0.0000
PHI= (.0000
PHI= 00,0000
Pril= C.0000U
PHI= 0.0000
PHI= (0.0000
PHI= 0.,0000
PHI= 0.0000

YC=
YC=
YC=
YC=
YC=
YC=
YC=
¥=
T=
T=
T=
1=
I=
T=
T=
1=
T=
T=
=
T=
=
T=
T=
T=
1=
T=
T=
1=

v YC=DELTA SUn bETA

XC=
X(C=
XL=
XC=
x(=
XC=
AC=
XC=
XC=
XC=
XC= .
XC=
XC=
XC=
XC=
XC=
XC=
xC=
XC=
XC=
XC=
0.32
0.20
0.08
0.00
V.00
0.00
0.00
0.00
0«00
Q.00

~0.65
50.50
101.66
lu2.B2
2039k
295.13
A0BL.2Y
45T 44
408459
499 14
51G.89
56¢2.04
&li.ly
E&L4,.33
Tise417
166,62
517,19
HbE .95
92C.12
Ylle2t
1022.473
PHI= =0.000u
PHI= -0,0005
PHEI= -0.0002z
PHI= L0000
PHI= G.0000
PHI= 0.000u
PHI= 0.0000
PHI= (0.000C
PHl= 0.000C
PHi= 00,0000

YC=
Yi=
YC=
¥YC=
yC=
YC=
YC=
YC=
YC=
YC=
YC=
YC=
¥l=
YC=
Y=
¥Y(C=
YC=
YC=
yC=
YC=
YC=
T=
T=
T=
=
T=
T=
1=
T=
T=
I=

"0000

-0.00

-0.00

-G 00

_OOOU

-0.00

~0.00
21062.98 V=
21034429 V=
21005.60 V=
20976.69 v=
20947.79 V=
20918.,67 V=
20889.76 V=
2UB60U.42 V=
20831.09 V=
20601.53 V=
207T71.98 V=
207T42.00 V=
20711.58 v=
2068l.16 V=
20649,.89 V=
Z20€E16.067 V=
CHTLell V=
20290.92 V=
20086.00 V=
20046431 V=
20014.39 V=

0.05

0.02

0.00

~0.00

-0.00

"O-OO

-0.00

-0.00

-0.00

-0.00

-0.00

"0.00

=0.00

-0.00

-3« 00

-0.00

Q.00

-0.00

-0.00

-0.00

-0.00
21050.69 V=
21022.66 V=
20994 .60 V=
2096ba26 V=
20938.30 v=
20905.82 V=
2088l.l4 V=
20852,66 v=
20823.75 V=
20794.63 V=

11.95%
11.9%
11.95
11.96
11.9¢
11.9¢
11.97
11.97
11.97
11.97
11.97
1197
11.97
11.96
11.95
11.94
11.89
10.85
16.07
10.062
10.00

J1.88
11.89
11.90
11.91
11.92
11.93
11.94
11.95
1196
11.96




I VARIABLES AT POINTS P AND ¢
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APPENDIX III

READ INPUTS: GEOMETRY
TOWING VELOCITY, SPATIAL
INCREMENT, ETC.

Y
 DEFINE INITIAL VALUES |
v
CALCULATE COEFFICIENTS OF
TOWING-POINT MOT%ONS

CALCULATE TIME INCREMENT,NEW TIME

¥
CALCULATE LONGITUDINAL
> VARIABLES AT POINT R

Y
CALCULATE £, £' AND ALL

Y
ESTIMATE TRANSVERSE
VELOCITY AT POINT R

Y
RE-ESTIMATE TRANS-
§¢L58%3¥ERTRANSVERSE VARIABLES | F'vrreE VELOCITY
. AT POINT &
ARE CALCULATED AND ESTIMATED [, QB
VALUES OF U WITHIN 1%?
YES
CALCULATE CORRECTION TO LONGI-
TUDINAL VARIABLES AT POINT &
Y
) IS CORRECTION LESS THAN 1%
L_NO e OF PREVIOUS VALUE?
[ YES |
PRINT OUTPUT
Y
| RE-INITIALIZE VARIABLES |
Y
CALCULATE TIME INCREMENT,NEW TIME
¥
TIME GREATER THAN FINAL TIME?

FLOW CHART FOR PROGRAMS CABL1 AND CABL2
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Figure 1. Forces and Moments Acting on a
Cable Element of Length Aso
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Figure 2.

Definition of Coordinate Systems
and Velocities .
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Figure 3. Displacement of a Cable Element
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Figure 4. Summary of Available Normal Drag
Force Data for Bare, Circular
Cables - From Reference 1
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Figure 5. Summary of Available Tangential

Force Data for Bare, Circular

Cables

- From Reference 1
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Figure 7. Time-Space Grid for End-Points
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Figure 6. Fixed Time-Space Grid Used
for Numerical Integration
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Y+iBpy
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Figure 8. Path of Integration for Evaluating
the Laplace Inversion Integral in
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Figure 9. Definition of Lengths and
Coordinates used for Calculating
Cable Shape
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